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Abstract
In this paper, we clarify the effect of noise on
common spectrally motivated algorithms such as
Diffusion Maps (DM) for dimension reduction.
Empirically, these methods are much more robust
to noise than current work suggests. Specifically,
existing consistency results require that either the
noise amplitude or dimensionality must vary with
the sample size n. We provide new theoretical re-
sults demonstrating that low-frequency eigenpairs
reliably capture the geometry of the underlying
manifold under a constant noise level, up to a di-
mension independent threshold O(r−2), where
r is the noise amplitude. Our results rely on a
decomposition of the manifold Laplacian in the
Sasaki metric, a technique not used before in this
area, to our knowledge. We experimentally vali-
date our theoretical predictions. Additionally, we
observe similar robust behavior for other mani-
fold learning algorithms which are not based on
computing the Laplacian, namely LTSA and VAE.

1. Introduction
In this paper, we revisit embedding algorithms such as Dif-
fusion Maps (1), providing a novel perspective on how these
methods allow for effective dimension reduction. A large
literature has been developed to study non-linear dimension
reduction under the so-called manifold hypothesis (2), where
samples are assumed to be drawn from a low-dimensional
manifold. Our goal is to show why these techniques remain
effective, even in settings where this assumption is violated,
with data having been contaminated with high-dimensional
noise.

That diffusion maps is robust to noise has been often ob-
served. However, the theoretical understanding of manifold
estimation in noise has proved to be slow in surrendering its
secrets; even in the face of remarkable tours de force such
as the ones we mention below, progress has been in small
steps. The following seminal papers have both advanced
the knowledge of what is possible and brought to light the
informational limitations posed by the presence of noise
for various statistical settings. In (3; 4; 5) it was shown

that manifold reconstruction is possible, and (6) studied the
minimax rate of covegence obtaining almost tight upper and
lower bounds of n−

2
d+2 for the Hausdorff error (where d is

the manifold intrinsic dimension). However, these, as well
as (7), consider reconstruction typically in ambient space
RD.

For estimating the Laplace-Beltrami operator, the state of
knowledge is less advanced. We recall that the m principal
eigenfunctions of ∆M provide an embedding of a manifold
in m≪ D dimensions, by the well known Diffusion Maps
(DM) / Laplacian Eigenmaps algorithm and its variants. (8)
obtains consistency and rates for the problem of Laplacian
estimation, albeit with the assumption that the noise ampli-
tude decays to 0 with the sample size n. For non-vanishing
noise, (9) assume the noise is subgaussian and decaying to
0 with n and D in every direction, but not in L2 norm1

Contributions Our paper studies the spectral convergence
of the noisy manifold Laplacian to the noise-free manifold
Laplacian under realistic assumptions of fixed ambient di-
mension D, and fixed noise amplitude r.

Under these conditions we firstly find that only the part
of the manifold spectrum below the noise spectrum is re-
coverable, with error proportional to the noise amplitude r.
This leads to a sharp threshold phenomenon in the recov-
ery of the spectrum of the noiseless manifold’s Laplacian
∆M from (infinite) noisy data. The recovery threshold is
O(1/r2) for a fixed noise distribution (constant dimension
and amplitude), and we discuss how this relates to noise
dimensionality in Section 3.1. Eigenvalues and eigenvec-
tors above the threshold are essentially irrecoverable, as the
geometry is dominated by the noise.

Secondly, in our approach, we leverage properties of the
Sasaki metric (10), which to our knowledge we are the first
to do in this literature. This helps us elegantly disentangle
the manifold and noise components of the data distribution,
decomposing the Laplacian into a horizontal operator along
the manifold M and a vertical operator normal to it.

1Similarly, (4) also rely on D being very large to obtain error

bounds (for example n ∼ 1010
d2

in the second paper), but with
exponential sample sizes (in the inverse tolerance and d) they
succeed to obtain errors that decrease with n.
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Figure 1: Random walk Laplacian eigenvectors overlaid on
samples from the circle (“clean" data) and annulus (“noisy"
data). The eigenfunctions of the circle exhibit typical spher-
ical harmonic structure. On the annulus the harmonic eigen-
function of the clean manifold is accurately preserved for
the lowest eigenvalue; the second in the display captures
orthogonal variation due to noise, and the third has a scram-
bled (noise+manifold) signal.

Thirdly, we conduct experiments validating this thresh-
old phenomenon and demonstrating the robustness of low-
frequency eigenpairs to noise on real and synthetic datasets.
Finally, we compare with two other manifold learning al-
gorithms that do not rely on the Laplacian—Variational
Autoencoders (VAEs) (11) and Local Tangent Space Align-
ment (LTSA) (12)-—and observe similar behavior.

2. Notation and background in manifold
geometry

Here we succintly introduce the Riemannian geometric con-
cepts used throughout the paper; see (13) for an introduc-
tion to Riemannian geometry, which formally describes the
objects listed below. For an embedded, oriented d dimen-
sional manifold M ⊆ RD, define the tubular neighbor-
hood of radius r about M, Tr(M) := {x ∈ RD : ∃y ∈
M, ∥x−y∥ < r}. We will assume M is at least C3. On oc-
casion where our results apply to more generic topological
structures, we refer to X as a bounded domain with smooth
boundary.

The reach τ of M is defined to be the largest r such that
all x in Tr(M) have a unique nearest member of M w.r.t.
the induced Euclidean metric on RD. We assume that M
is compact, with τ > 0. Without loss of generality we
take τ > 1 by appropriately rescaling our coordinates, and
we assume our generative distribution µ is supported on
Tr(M). We can identify the tubular neighborhood with
tuples (x, v) ∈ M × BD−d

r (x); each y ∈ Tr(M) can be
uniquely identified by the nearest point πy ∈ M and the
deviation from this point y−πy. More generally, such pairs

(x, v) can be identified with elements of the normal bundle
NM = ⊔x∈MNxM, NxM the normal space at x, via
the exponential map exp(x, v). For a map π, we denote its
pullback by π∗ and pushforward by π∗.

We equip the normal bundle with a Riemannian metric,
a positive definite bilinear form g(x,v) : T(x,v)NM ×
T(x,v)NM. We will often express g as an inner-product
⟨·, ·⟩, suppressing the point-wise dependency. A metric on
an oriented manifold determines a unique volume form dµg .

Laplacian operators ∆ denotes the Laplace-Beltrami
operator (Laplacian) (14), and ∆µ the weighted Laplacian
∆µ = ∆+ ⟨∇ log dµ,∇·⟩ (15) (we may also denote it ∆p,
with p the density function, again w.r.t the induced Euclidean
metric from RD), with both operators implicitly taken with
respect to the induced metric. For corresponding operators
in the Sasaki metric (introduced below), we adorn them with
a ∼, i.e. ∆̃. When referring to an operator with regard to a
specific space, we may denote this with a subscript, i.e. ∆M.
We consider these operators on their respective Neumann
sobolev spaces, denoted H2(X ) := H2(X , µ, g), for X
the space of interest (M, Tr(M), etc.). When referring
to their spectral data, we order the eigenpairs (λi, ϕi) such
that λi ≤ λj for i ≤ j. We often use functional notation to
refer to the operator they correspond to, i.e. λi(∆) being
the ith induced Laplacian eigenvalue. Denote Pλ(·) as the
projection onto the eigenspaces with eigenvalue < λ, or
alternatively PK(·) the span of the first K eigenfunctions.

2.1. The Sasaki Metric

We highlight the essential construction of the Sasaki metric
on TNM following (16, Section 1.1). For extended details
see Appendix A. For (x, v) ∈ NM, we identify the tangent
space with

T(x,v)NM = H(x,v)NM⊕ V(x,v)NM

with the vertical part V(x,v)NM corresponding to
the orthogonal away from M and H(x,v)NM the
horizontal transversal to it. Take local coordinates
(x1, . . . , xd, v1, . . . , vD−d), xi coordinates on M, v an or-
thogonal vector.

Let ξ =
∑

i ξi∂/∂xi + ξd+i∂/∂vi ∈ T(x,v)NM, and iden-
tify v as an element of NxM. Define the connection map
(17) K⊥ : T(x,v)NM → NxM, K⊥(ξ) := K⊥

(x,v)(ξ) :=∑D−d
i=1 (ξd+i +

∑
j,k≤d Γ

i
jkvjξk)∂/∂vi where Γi

j,k are the
Christoffel symbols (13) of the induced connection ∇⊥ on
NM. The Sasaki metric is defined to be

⟨u, u′⟩Sa = ⟨π∗u, π∗u′⟩TxM + ⟨K⊥u,K⊥u′⟩NxM.

This metric orthogonalizes the movement “horizontally"
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Figure 2: Visualization of the induced(left) and Sasaki(right)
metrics on Tr(S1). The grids represent orthogonal coordi-
nates and the brown lines are geodesics in the respective
metrics.

(along the manifold) and “vertically" (normal to the mani-
fold), independently preserving horizontal and vertical dis-
placement (18).

For weighted Laplacians on Tr(M), we will assume that
the respective densities dµ (w.r.t. the ambient measure) fac-
tors along the horizontal and vertical spaces, dµ(x, v) =
dµSap(x)q(v), identifying q with a fixed function on the
canonical fiber BD−d

r . In other words, as made precise
in Lemma A.1, we can generate samples from µ by sam-
pling the manifold, then adding orthogonal noise that only
depends on the selected point via the direction of the orthog-
onal. For example, X generated by sampling M supported
on M then adding isotropic Gaussian noise in the direction
of the orthogonal meets this requirement. This noise struc-
ture is typical in the manifold learning literature ((6; 19),
etc.). We further assume that this orthogonal noise has
compact support equal to a ball of radius less than the reach.

2.2. The Sasaki Laplacian for Tr(M)

The primary utility of the Sasaki metric is the spectral struc-
ture it induces. Consider the noisy circle (annulus), which
we equip with the product metric S1 × (a, b). If we take the
Neumann (insulated) boundary condition, then we see by a
separation of variables argument that the Laplace-Beltrami
operator decomposes as ∆ = ∆S1 ⊕∆(a,b) =: ∆S1 ⊕∆r,
where r is the width |b−a|. As r → 0, one can compute that
the minimal non-trivial eigenvalue of ∆r grows as r−2, with
the consequence being that any eigenfunction with smaller
eigenvalue must be constant orthogonally to the circle.

The above properties hold in general for the Sasaki metric
of the tubular manifold Tr(M), as shown in Proposition 2.1
below. Before we state the proposition, we introduce the
following technical artifice that will be useful throughout
the paper.

Rather than considering differential operators with differ-
ent domains Tr(M), for r ∈ (0, 1), we fix T1(M) as
a reference space. Then we identify the Sobolev spaces

H2(T1(M)) with H2(Tr(M)) via f → f ◦ σr, where
σr(x, v) := exp(x, v/r) = (x, v/r) is called a rescaling
map. In other words, to study the spectra of the contracted
operator ∆̃µ,r := ∆σr∗µ, it suffices to study its conjugate
Λ̃µ,r := σ∗−1

r ∆̃µ,rσ
∗
r , the weighted Laplacian in the metric

⟨·, ·⟩Sa,r := ⟨σ∗
r ·, σ∗

r ·⟩Sa, which has the same spectrum as
∆̃µ,r.

We verify properties of a horizontal-vertical decomposition
of the weighted Laplacian analogous to the unweighted case
previously presented in (18; 20; 21).

Lemma 2.1. Let M, Tr(M), µ on Tr(M) factorizing
w.r.t. the horizontal and vertical spaces, and Laplacians
∆M,p, ∆̃µ,r as defined above. Then the following hold.

1. Λ̃µ,r has discrete spectrum with finite multiplicity
eigenvalues, and decomposes as

∆̃µ,r = ∆H,p +
1

r2
∆V,q.

for some operators ∆H,p,∆V,q such that
∆H,p(f) ◦ π = ∆M,pπ

∗f , ∆V,q(f)(x, v) =
∆B(0,1)(f |π−1

x
)(v) + ⟨∇ log q,∇f |π−1(x)(v)⟩,

2. The operators Λ̃µ,r, ∆V,q , and ∆H,p are non-negative
and self-adjoint.

3. Λ̃µ,r, ∆H,p, and ∆V,q commute pairwise; hence,
there is a common orthonormal basis {ϕi}∞i=1 ⊂
L2(T1(M), µSa) of smooth eigenfunctions such that

∆H,pϕi = λHi ϕi, ∆V,qϕi = λVi ϕi,

Λ̃µ,rϕi = (λHi +
1

r2
λVi )ϕi.

These eigenfunctions and spectra λHi , λ
V
i are invariant

for 0 < r < τ

4. For λi(Λ̃µ,r) ≤ λV1 /r
2, ϕi(Λ̃µ,r) = ϕi(∆p) ◦ π and

λi(Λ̃µ,r) = λi(∆p).

Proposition 2.1 states that the spectrum and eigenfunctions
of the Sasaki Laplacian of the noisy manifold Tr(M) re-
cover the noise free coresponding quantities of ∆M below
the noise dependent threshold ∝ r−2. This supports the
intuition that the principal eigenspaces of a manifold Lapla-
cian are robust to noise, and, moreover, that the robustness
extends to larger eigenvalues when the noise amplitude r
decreases.
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3. Spectral Analysis of Noisy Manifold
Laplacian

3.1. The low spectrum of the noisy manifold Laplacian

As we saw in the case of the Sasaki metric, the low-order
spectrum of the Laplacian bears close resemblance to that
of the underlying manifold. We extend these results to the
induced metric Laplacian via a perturbation analysis.

Theorem 3.1 (Spectral perturbation for small eigenvalues).
Let ∆ be the Laplacian on Tr(M), r < 1 < rM, with mea-
sure µ; in the weighted case take µ factoring w.r.t horizontal
and vertical spaces, µr := σ∗

rµ, otherwise let µr be the am-
bient measure. Let ∆M be the corresponding operator on
M, in the weighted case with respect to the density p. Let
λk(∆M) < λV1 /r

2.

There exists a constant C depending on M such that

|λk(∆M)− λk(∆)| ≤ 8λkCr.

Further, for λ < λV1 /r
2, there exists a constant Cλ such

that
∥π∗Pλ(∆M)− Pλ(∆)∥ ≤ 16CλCr,

in particular, for any λk(∆M) ≤ λ simple,
ϕk(Λ̃µ,r), ϕk(Λµ,r) unit, there exists C ′ depending
on λ,M such that

∥π∗ϕk(∆M)− ϕk(∆)∥L2(µr) ≤ C ′λk(∆M)r,

Corollary 3.2. Let P(µ) denote the Poincaré constant of
a distribution µ. With the above notation, the Poincaré
constant P(µr) = P(π∗µ) +Cr with C only depending on
M, p.

In other words, in the low-frequency regime, the Neumann
eigenfunctions of ∆Tr(M) agree up to small error with con-
stant orthogonal extension of the eigenfunctions of the base
manifold, f ◦π. Thus, procedures like diffusion maps, when
truncated to a small basis, perform dimension reduction by
implicitly denoising the data. In the high frequency regime,
such a recovery is hindered not only by the magnitude of the
perturbation, which is proportionate to the corresponding
eigenvalue, but also by the presence of non-trivial “noise"
eigenfunctions. In fact, as the noise dimension D− d is typ-
ically much larger than the manifold d, even in the Sasaki
metric the number of eigenfunctions with no orthogonal
dependence is negligible in the limit. This, along with the
shrinking spectral gaps (of the resolvent) and, as previously
noted, increasing perturbation size, lead to unrecoverable
manifold data in the continuum.

We now discuss byproducts of our result. As we see in
Corollary 3.2, this spectral approximation translates to guar-
antees on mixing times (22) and geometric inequalities (23)
that closely relate the concentrated tube to the underlying

manifold. Our bound also suggests a similar consistency
for noise with increasing dimension as verified for empir-
ical Laplacian estimation in (9). In typical examples λV1
increases with the dimensionality of the noise, thus yielding
the result if coupled with a verification that the correspond-
ing perturbation magnitude also decreases. While we see
this empirically for orthogonally uniform noise in Figures 5
and 11, we conjecture that such consistency can be verified
under a generic log-concavity assumption.

Our analysis is geared toward the study of very regular noise
structures, and this is more restrictive than one might expect
for real data. However, in practice, these same spectral phe-
nomena are observed in far more irregular sampling settings
so long as the measure is sufficiently concentrated about a
low-dimensional structure. We sketch how our approach
can be extended to deliver theoretical guarantees in such
cases. For µ with smoothly varying tube widths/orthogonal
densities, one can construct a natural diffeomorphism ψ
such that the support of ψ∗µr is a tube manifold, and ψ∗µr

factors w.r.t horizontal and vertical spaces. This amounts to
stretching or contracting the measure smoothly to achieve
the desired structure. This is an isometry if we equip the
resulting tube with the metric (ψ−1)∗g, for g the original
Euclidean metric. Thus, the results of Appendix 3.1 are
immediately applicable if we can verify that under rescaling
this metric sufficiently approximates the Sasaki. We expect
this to be similar to the verification for the induced metric,
but we leave this to future work. In the following section we
prove generic spectral growth bounds applicable to irregular
domains.

3.2. Multi-scale Spectral Growth and a Weyl law

As a retrospective, we note that aspects of the spectral
phenomenon presented in Section 3.1 are present in more
general settings. Tubular neighborhoods are a particu-
lar example of multi-scale distributions, distributions that,
in an appropriate sense, have dimension that changes de-
pending on the scale which one localizes at. This is
made precise via the packing number Pack(Tr(M), ε) =
Pack(Tr(M), ε, ∥ · ∥∞), the maximum number of disjoint
cubes with side length ε and center in Tr(M). Packing and
the related covering number appear ubiquitously in statis-
tical learning when describing the complexity of a space,
and have been tied to convergence rates of other geometric
quantities such as the Wasserstein distance (24).

For ε relatively large compared to r, Pack(Tr(M), ε) grows
at the intrinsic rate ε−d, but as ε dives below the noise
threshold we get the extrinsic ε−D. Not coincidentally, this
is likewise seen in the growth rate of the spectra above and
below λV1 /r

−2, measured by the counting function

N(λ) := |{i : λi(∆X ) ≤ λ}|.
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Figure 3: Spectral growth of the circle and annulus from
Figure 1 in the induced and Sasaki metrics, eigenvalues
empirically estimated.

As shown in Figure 3, below this threshold, the tubular
neighborhood has eigenvalue growth reflecting that of the
base manifold. Above the threshold, the growth is slower,
that is, the counting function N(λ) is larger, reflecting its
asymptotic behavior as an extrinsic dimensional domain
in RD. The relationship between Laplacian spectra and
coverings is classical, dating back to the original proof of
the Weyl Law (25). Several recent papers (26; 27) have
bounded the spectral growth of the Neumann Laplacian from
this perspective. Leveraging their approaches, we precisely
quantify the low-order spectral growth, characterizing it in
terms of packings. Note that, in the limit, the typical Weyl
law verifies the extrinsic dimensional dependence λi ∼
i2/D.

Theorem 3.3. Let X be a bounded domain with smooth
boundary, and define

C(k, ε) := sup
x∈X

Pack(BX (x, kε), ε),

R(ε) :=
infx∈X µ(B(x, ε))

supx∈X µ(B(x, ε))
.

Then,

N(C(4, ε)ε−2) ≤ Pack(X , ε)/(4C2(4, ε))R(ε).

If, in addition, X is convex or has empty boundary, then
there exists C ′ depending on X such that

Pack(X , ε) ≤ N(C ′ε−2/C(2, ε)).

For our tubular neighborhood model Tr(M), the first of
these inequalities implies that eigenvalue frequency below
noise level reflects the base manifold.

Corollary 3.4 (Local Weyl law for ∆Tr(M)). Let ∆Tr(M)

be defined as in the previous sections. Then, for ε > 2r,

there exists a constant C > 0 depending only on M, such
that C(4, ε)ε−2 ≤ λCε−d .

In the results above, we leave many of the bounds expressed
in full detail, even though many of the quantities could
be collapsed down to a constant. For example, C(4, ε) is
simply the maximal number of ε cubes that can be packed
into a 4εX cube. That this is no larger than 4D is immediate,
however it is much smaller (≈ 4d for the tube) for ε not too
small, which is frequently the case of interest. Similarly,
R(ε) tends to 1 for ε large and 1/2 as ε→ 0, with a global
bound depending on how curved the boundary of the domain
is.

That the tube is multi-scale also plays an essential role
in the estimation of its spectral data. At face value, this
problem suffers from the curse of dimensionality, with con-
vergence rates depending exponentially on the ambient di-
mension D. However, the approximation quality of Dif-
fusion Maps is proportionate to the W∞ distance between
the empirical distribution µn and µ (8). For µ supported
on Tr(M), a simple application of the triangle inequal-
ity yields W∞(µn, µ) = O(W∞(π∗µn, π∗µ) + r). Thus,
achieving estimation error at the order of the bias is an
intrinsic dimensional problem.

4. Experiments
4.1. Data

We experimentally verify the extent to which the approx-
imation in Theorem 3.1 holds for both synthetic and real
datasets. Here we briefly describe the data used in our ex-
periments, while more details can be found in Appendix
D.

Synthetic Data: For our synthetic experiments we sample
data from the following manifolds: Sd, the S-Shape, and the
Bottle (a more complicated manifold described in Figure
7) to which we add noise uniformly distributed on a ball of
radius r in the normal space to the manifold.

Real Data: For our real data experiments we use Molecular
Dynamic Simulations (MDS) datasets consisting of atomic
configurations from three molecules: Toluene(Tol), Malon-
aldehyde(Mal), and Ethanol(Eth) from (28). These simula-
tions require massive compute power, are extremely precise,
and generate atomic configurations that exhibit non-linear,
multiscale, non-i.i.d. noise, as well as complex topology
and geometry, often lying near low-dimensional manifolds
(29). We perform SVD to reduce the ambient dimension to
D = 50 and add noise uniformly distributed on a ball of
radius r in the ambient space.
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4.2. Validation of Theoretical Results

In this section we empirically validate the predictions of
Theorem 3.1. For this purpose, we estimate the Laplace op-
erators ∆M and ∆Tr(M) and their spectral decomposition
from data using the renormalized Diffusion Maps Lapla-
cian (1). We do so for all manifolds described in Section 4.1
and for many tubular neighborhood radii r ∈ (0, τ) (with τ
being close to the manifold reach) and dimensions of the
normal space dn = D − d.

First, we use the estimated eigenpairs to confirm the robust-
ness to noise (both dn and r) of the low-frequency eigen-
pairs of ∆Tr(M) below the noise threshold λV

1

r2 . We do
this quantitatively by verifying that the error between the
low-spectrum eigenspaces (represented by their projectors)
and their noiseless counterparts increases linearly with r.
Furthermore, we notice a mild decrease in error as D gets
larger, as argued in (9). Qualitatively, we observe that low-
frequency λi(∆Tr(M)) and ϕi(∆Tr(M)) remain stable as

dn is varied and as long as λi(∆Tr(M)) <
λV
1

r2 .

Second, we show that, as the theory suggests, eigenvectors
with λi(∆Tr(M)) >

λV
1

r2 are corrupted by noise, the noise
threshold acting as a delimiter between the noiseless and the
noisy eigenpairs. Quantitatively, we verify this prediction by
computing the empirical correlations between ϕi(∆Tr(M))
and ϕj(∆M) which suffer a sharp decrease for eigenvectors
above the noise threshold, a behavior that is independent
of sample size. Qualitatively, we observe that the values
of λi(∆Tr(M)) are perturbed as they approach or go above
λV
1

r2 and that the corresponding eigenvectors are no longer
correlated with the coordinate space of M.

The experiments above are visually depicted in Figure 4 and
elaborated upon in the Appendix E.

5. Other Manifold Learning Algorithms
Although our main theoretical results pertain only to the
Laplace operator, we observe the same behavior outlined in
Theorem 3.1 and verified in our experiments for VAE (11)
and LTSA (12), two manifold learning algorithms not based
on Laplacian decomposition.

First, we observe that VAEs will learn a set of embedding
coordinates ϕi that are stable w.r.t. to both r and dn and
which are indispensable for reconstruction. However, if the
latent space has more capacity than that, then the VAEs will
use the extra coordinates to encode noise. Second, the em-
beddings computed by LTSA, a classical manifold learning
algorithm that does not rely on Laplacian estimation, behave
similarly to the eigenvectors ϕi(∆Tr(M)) we estimated in
Section 4.2 using Diffusion Maps.

Our results are summarized in Figure 5 and expanded in

(a) Heatmaps of the empirical correlations between ϕi(∆Tr(M))

(rows) and ϕj(∆M) (columns) on S2. Notice the sharp decrease in
correlation once λi(∆Tr(M)) > λV

1 /r2.

(b) Error between the projectors onto the K-th eigenspace of ∆M
(computed analytically) and ∆Tr(M) (estimated) on S2. Notice the
linear increase in error as r increases (left) and the mild decrease in
error as D increases (right).

(c) Qualitative validation of our results on two manifolds: the
Toluene molecule(left) and the Bottle(right) with dn = 3. In the
top plots, each path corresponds to one λi(∆Tr(M)) which are
almost constant until λV

1 /r2(the black line) approaches them. In
the bottom plots, we color the coordinate spaces of the manifolds
by low-frequency (top) and high-frequency (bottom) ϕi(∆Tr(M)).
Notice the stability of the former as r increases and the sudden
corruption of the latter once the noise threshold is passed.

Figure 4: Summary of the experiments validating our theo-
retical results
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Appendix F where we fully describe the models and hyper-
parameters used.

6. Discussion and related work
Embedding manifold data in low dimensions by eigenvec-
tors has been one of the most successful directions in non-
linear dimension reduction (12; 30) both practically and
from the point of view of the theoretical understanding it
allows. Among these algorithms, the DM algorithm of (1)
using the eigenvectors of (a matrix estimating) the Laplace-
Beltrami operator ∆M of the manifold has been a central
subject of study, but the practical success of spectral meth-
ods is due to their robustness on real data that rarely satisfy
the manifold hypothesis.

In this paper, we provide a new perspective on why, and to
what extent, this robustness is to be expected. We study the
relation between the ideal ∆M and the Laplace-Beltrami
operator ∆ of Tr(M), a noisy version of M.

We show (in Theorem 3.1) that indeed the eigendecompo-
sition of the Neumann Laplacian in the perturbed domain
differs from that of the intrinsic manifold M by a mild
error in the low-frequency regime, thus corroborating the
traditional wisdom that eigenfunctions associated to small
eigenvalues are stable. But our results in Sections 3.1 and
2.2 also strongly suggest that the recovery is limited to the
part of the ∆M spectrum below a threshold O(r−2), rep-
resenting the first non-trivial noise eigenvalue, after which
recovery becomes impossible, due to the high density of the
noise spectrum above this threshold.

Furthermore, in Section 3.2, we present more general results
and intuitions on the spectral density for a larger class of
geometric objects in noise, as we relate eigenvalue growth
rate to packing numbers. These results allow for general
noise structures, tying into our sketch of how our noise
assumptions can be loosened presented in Section 3.1.

The study of manifold estimation in noise is more than a
decade old (2; 3; 4; 9; 6; 31), and we adopt the standard as-
sumptions of “tubular” isotropic, i.i.d. noise. But in contrast
with previous works that have studied the impact of noise in
related geometric (9) and kernel based (31) algorithms, our
present work does not require the amplitude and dimension-
ality of the noise to change with the sample size. Further,
this analysis is agnostic to the particular choice of estima-
tor (e.g. (1; 9)), as we show that the continuum Laplace-
Beltrami operator itself has desirable robustness properties
with regard to its principal eigenvalues and eigenfunctions.
To handle the fixed noise assumption, we introduce new
techniques, based on the elegant Sasaki metric concept (10).

Our proof technique resembles those employed for Lapla-
cian spectral estimation (8; 32). Central to both arguments

is a realization of the near isometry between two spaces,
in our case the induced and Sasaki metrics, while former
works have emphasized comparisons between empirical and
population distributions. Studying the effects of noise on
the Laplacian and related heat operators has a rich literature
in Differential Geometry. We utilize key techniques from
(20; 33).

While we do not currently have a matching lower bound,
we anticipate that the bias proportionate to r is the optimal
possible, particularly for less regular noise structures (as it is
possible to exploit our strict noise structure to learn M itself,
e.g. (6)). Note that since our results are in population, if they
are tight, no procedure will be able to recover the Laplacian
eigenfunctions at a better accuracy. Beyond the scope of this
submission, we have considered the recoverability of the
eigenfunctions and spectrum above the O(r−2) threshold.
We find strong indications that this recovery is not possible,
based on the density of noise eigenvalues that far exceeds
the density of the ∆M eigenvalues in the spectrum. We
leave this for an upcoming paper.

Other benefits from our results are as follows. First, practi-
cally, by verifying this result in the continuum, we provide
novel asymptotic guarantees for (biased) spectral recovery
even in the presence of noise. The second benefit is a better
understanding of how spectral algorithms like DM provide
meaningful dimension reduction. In the noiseless case, it is
a geometric result that infinite dimensional eigenbases re-
cover the geometry of the domain (34; 35), hence seemingly
more eigenvectors would recover more information. How-
ever, here we show that with noise, using more eigenvectors
will overfit the data by recovering the uninformative geome-
try of the noise. It is exactly the low dimensional truncated
eigenvector bases commonly seen in practice (1; 12; 36) that
provide the highest resolution of the underlying manifold.

What do our results say about the robustness of Diffusion-
Maps algorithm in practice? First, note that the error bound
O(r) does imply robust, if inexact recovery in real data. In
particular, in typical examples as the noise threshold grows
proportionately to the noise dimension, our results allow
for noise amplitudes of r

√
D − d which can be quite large.

Second, in real scenarios, noise is often not fullD−d dimen-
sional, but has a multi-scale structure, where the large noise
is only inD′ < D dimensions. Our results do not depend on
D, hence they (approximately) cover this case too. Third, if
the eigengaps λk(∆M)−λk−1(∆M) are sufficiently small,
it is possible that the respective λk(∆), λk−1(∆) change or-
der, while the combined eigenspace remains approximately
the same. Thus, if we were to use the eigenvectors of ∆ for
obtaining an embedding, the selection of m eigenvectors
(m > d being the embedding dimension) may vary between
noise level and noise instantiations on the same underlying
manifold M.
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(a) Results for VAEs trained on S2 for dn = 16 and r in-
creasing from left to right. Each panel corresponds to one
ϕi and displays from top to bottom: the coordinate space of
S2 colored by ϕi, the reconstruction of the data without ϕi,
and the prediction of each ϕi from normal space/noise coor-
dinates by a polynomial regression model. ϕ1,2,3 are stable
w.r.t. to noise, indispensable for reconstruction, and cannot
be predicted from noise. Conversely, ϕ4 is not correlated
with the coordinate space of the manifold, not important for
reconstruction, and easy to predict from noise coordinates.

(b) Results for LTSA for the S-Shape. Left: Stability w.r.t to r of the
low-frequency embeddings and the threshold effect exhibited by the high-
frequency ϕi as they become drowned by noise. We color the coordinate
space of the manifold by ϕi as r increases from left to right. In the next
panel, we use a polynomial regression model to predict each ϕi from
the known normal space/noise coordinates. When we are able to do so,
we can conclude that the corresponding ϕi represents encodes. Right:
Stability of ϕ1 w.r.t to varying r and dn ∈ {16, 24, 32}(top) vs the lack
thereof of the higher- ϕ10(bottom).

Figure 5: Summary of results for other manifold learning algorithms.

In our theorems, we do not assume that the sampling is
uniform; but we make the strong assumption that the sam-
pling distribution µ factors w.r.t. the horizontal and vertical
spaces, in other words, that the noise is orthogonal, has
tubular support, and is independent of x. If the noise is not
isotropic, or if the noise distribution is not uniform (but still
independent on x), it is easy to see that Theorem 3.1 will
continue to hold, albeit with a different threshold of λV1 r

−2,
where λV1 is the lowest eigenvalue of the noise distribution,
as in Section 2.1. If the noise becomes highly anisotropic, in
other words, if the density of noise eigenvalue decreases (for
example, if λV1 has multiplicity 1), then some eigenpairs
beyond the noise threshold may be recoverable as well.

Empirically, DM and other spectral algorithms are robust
also when the noise varies along the manifold, as can be
seen e.g. in the MDS experiments. While our results do
not cover this case, we believe that they can be extended,
by making the assumption that the noise is approximately
i.i.d. In such a case, an additional estimation error will be
incurred due to the difference between tubular noise and
the actual noise. Furthermore, in future work, we believe
we can extend our results to slowly varying departures from
tubular noise.

Our experiments in Sections 4 confirm that the theoretical
results carry over to finite samples, where we observe eigen-
function perturbations on the order of the tube width, as well
as perturbation reduction with increased noise dimension.
We see this repeatedly in qualitative experiments, where
sufficient sample noise and spectrum depth leads to loss of

eigenfunction signal.

The experiments in Section 5 with LTSA and VAE demon-
strate a similar phenomenon. As LTSA is principally a
manifold learning algorithm, this close correspondence is
not surprising. VAE on the other hand bears no direct rela-
tionship to DM, however we observe the same qualitative
behavior. Fitting our generative distribution with a low-
capacity, low-dimensional embedding, we arrive at a par-
titioning of the coordinates into manifold components and
noise.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Appendix / supplemental material

A. Extended Background
This section seeks to clarify basic properties of the Sasaki metric and Laplacian (10).

Figure 6: A curves on the annulus displayed in the Sasaki metric (left) compared to the induced (right).

Example and intuition As motivation, consider a circle with noise, an annulus, with inner-radius 0.5 and outer radius 1.5.
A natural parameterization for this surface is (θ, r) ∈ R/2πZ × (0.5, 1.5), the angular and radial coordinates. With this
representation, a simple metric structure is the product metric,

d((θ1, r1), (θ2, r2)) =
√

∥θ1 − θ2∥2R/2πZ + (r1 − r2)2.

Of course, this structure fails to account for the curvature of the circle, as demonstrated in Figure 2. For example, in the
Euclidean geometry, two points on the inner-most circle are comparatively much closer than those on the outer-most, while
the Sasaki metric returns the same value in both instances. However, if these radii are close together then these values will
only differ negligibly, and the Sasaki geometry recovers the ambient up to a small perturbation. To cover this in further
detail, we follow (37, Chapter 2.4).

Horizontal and vertical spaces To understand why the induced metric does not adequately capture the desired product
structure enabled by the Sasaki metric, consider the annulus displayed in Figure 2. Notice that displacement orthogonally to
the circle agrees between the two metrics; lengths and geodesics in one correspond exactly to the other. However, if we
consider displacement in the tangent or horizontal direction, the same cannot be said. Visibly, the geodesics of the induced
metric follow the euclidean straight lines (when possible), and this is particularly problematic when we seek to identify the
tangents and orthogonals across different points of this set. Ideally, we would like to identify each point in the tube with its
nearest counterpart along the circle, and this idea extends to when we consider directional differentiation. If at one point
on the annulus we had an operator corresponding to orthogonal differentiation and we sought to replicate this at another
point by slowly varying this operation across the domain (a technical operation known as parallel transport) then it would be
desirable if at each point along the way the orthogonality to the sphere was maintained. Thus this requires the metric to
adjust for the different effects of curvature as our path moves closer and further from the inner-most radius, as well as along
the manifold if it is not of constant curvature.

Thus we see that fundamental to our problem is an appropriate identification of a “horizontal space" for generic points on the
tube to the tangent space at their projection. Precisely, we represent the tubular neighborhood with a neighborhood of the 0
section of the normal bundle NM via the exponential map. Taking local coordinates (x, v), x ∈ M, v ∈ NxM ∼= RD−d

we get a coordinate basis of the tangent space T(x,v)NM, ∂/∂x1, . . . , ∂/∂xd; ∂/∂v1, . . . , ∂/∂vD−d. As indicated above,
it would not be appropriate to equate the horizontal to the seemingly obvious basis ∂/∂xi. We must make a selection
dependent on the curvature of M as well as the displacement at v. Let us compute how movement in the coordinate
directions effects the orthogonal v when moving along the manifold. Take a curve γt in M that is incident to x at t = 0
with tangent velocity α :=

∑
i αi∂/∂xi. Let u(t) be the section of NM along γt that is the parallel translation of v. Thus

u(t) corresponds to a curve in NM, u(t) = (x1(t), . . . , xd(t), v1(t), . . . , vD−d(t)), and we can immediately compute
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ẋi(0) = αi. In our coordinate chart, by construction we also have

0 = (∇⊥
α v)

i = v̇i(0) +
∑
j,k

Γi
j,kẋj(0)vk(0) = v̇i(0) +

∑
j,k

Γi
j,kαjvk,

and thus v̇i(0) = −
∑

j,k Γ
i
j,kαjvk. In this way, it is useful to think of the tangent vectors to the normal, ∂/∂vi as dummy

variables encoding the the tangent velocity of sections of NM. This leads us to a natural definition of the Horizontal space
as H(x,v) := {X : X =

∑
i αi∂/∂xi −

∑
j,k Γ

i
j,kαjvk∂/∂vi} for which we see this is exactly the kernel of the connection

map K⊥ : T(x,v)NM → NxM, K⊥(ξ) := K⊥
(x,v)(ξ) :=

∑D−d
i=1 (ξd+i +

∑
j,k≤d Γ

i
jkvjξk)∂/∂vi

As suggested in the above intuitive picture, we would like the orthogonal fibers in the Sasaki tube geometry to be isometric
to those of the induced metric, Euclidean balls. This corresponds to the identification of the “vertical spaces" as the tangents
to the orthogonal subspaces, spanned by ∂/∂vi, V(x,v). This space is the kernel of π∗. Thus we see that the Sasaki metric,

⟨u, u′⟩Sa = ⟨π∗u, π∗u′⟩TxM + ⟨Ku,Ku′⟩NxM.

amounts to an orthogonalization of T(x,v)NM = H(x,v) ⊕ V(x,v).

Measure factorization When considering manifolds equipped with a measure µ, we characterize below the appropriate
densities for our results are applicable.
Lemma A.1. A distribution µ supported on Tr(M) factors along horizontal and vertical spaces if and only if X ∼ µ is
equal in distribution to M + EM where M is sampled with density p on M and EM is supported on the orthogonal to M ,
such that (γt)∗EM

d
= Eγt(M) for γt the flow of a basic vector field.

Proof. Let Br be the ball of radius r in RD−d. By construction, Tr(M) equipped with the Sasaki metric is locally isometric
to the product structure M×Br. Indeed, we can follow an argument in local coordinates as seen in (18, Theorem 1.5). We
take a bundle chart in TNM with local coordinates (x, v, ξ, η). Due to the decomposition T(x,v)NM = H(x,v)⊕V(x,v), we
adopt a local frame ϕ1, . . . , ϕd, ψ1, . . . , ψD−d such that the ϕi span the horizontal subspace, and the ψi the vertical. As these
subspaces are orthogonal, we can wlog adapt our coordinate system so that (x, v) are such that ∂/∂xi = ϕi, ∂/∂vi = ψi,
and thus our metric is the product metric on X × V . The left factor is isometric to a domain in M as the Sasaki metric
is a Riemannian submersion, and the right factor is isometric to Br by (18, Proposition 5.2). Classical computations
(37, Section 2.4) yield that such coordinates can be constructed about m ∈ M via the exponential map of TNM,
(x, v) → exp(m,0)(x+ v), x ∈ Hm,0 = TmM, v ∈ Vm,0 = NmM, x, v localized appropriately.

Now, let us assume first that the normal bundle of M is trivial, so that the isometry above was global. In this case, the
assumption that µ factors w.r.t horizontal and vertical spaces can be expressed equivalently as µ being a product measure on
M×Br by the above isometry. In this case the equivalence is trival as flows of basic vector fields leave Br invariant.

In general, as the flow of γt from any initial point m ∈ M is a compact path, we can cover it by a finite collection of bundle
charts, for each of which the claim is verified. Hence, by the compatibility of these charts, the claim holds across the whole
path.

B. Spectral Analysis
B.1. General Properties of the Sasaki Metric. Proof of Proposition 2.1

The proof of Proposition 2.1 consists of a series of steps, each in supporting statements proved separately. See Section 2 for
relevant definitions/assumptions.
Lemma B.1. Let u ∈ V(x,v), then

⟨K⊥u,K⊥∇f(x, v)⟩NxM = ⟨K⊥u,∇f |π−1(x)(v)⟩NxM.

For u ∈ TxM, ∫
π−1(x)

⟨ũ,∇f⟩Sa dq = ⟨u,
∫
π−1(x)

f dq⟩TxM.

where we denote by ũ the unique element of H(x,v) such that π∗ũ = u (the horizontal lift).
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Proof. The second is an immediate consequence of (18, Proposition 3.14). For the first, by definition,

u(f) = ⟨u,∇f⟩Sa = ⟨K⊥u,K⊥∇f⟩NxM.

Now, u(f) =
∑

i ui
∂f
∂vi

and the identification is immediate.

Lemma B.2. Λ̃µ,r has discrete spectrum with finite multiplicity eigenvalues, and decomposes as

Λ̃µ,r = ∆H,p +
1

r2
∆V,q.

Proof. It follows from (20, Section 2.1) that

Λ̃µ,r = σ∗
1/r∆̃µ,rσ

∗
r = ∆H +

1

r2
∆V + σ∗

1/r⟨∇ log d(σr∗µ),∇·⟩Saσ∗
r .

We first verify that

σ∗
1/r⟨∇ log d(σr∗µ),∇·⟩Saσ∗

r = ⟨∇ log p, π∗∇·⟩TM +
1

r2
⟨∇ log q,K⊥∇·⟩NM.

A change of variables yields d(σr∗µ) = σ∗
r (dµ)r

D−d ∝ (σ∗
rp)(σ

∗
rq), hence

⟨∇ log d(σr∗µ),∇·⟩Sa = ⟨∇ log σ∗
rp, π∗∇·⟩TM + ⟨∇ log σ∗

rq,K
⊥∇·⟩NM,

where the final equality follows from p, q being horizontal/vertical respectively, and we identify them with the corresponding
functions on M, B(0, 1). Noting that differentiation commutes with the pullback, we see

⟨∇ log d(σr∗µ),∇·⟩Saσ∗
r = ⟨∇ log σ∗

rp, π∗∇σ∗
r ·⟩TM + ⟨∇ log σ∗

rq,K
⊥∇σ∗

r ·⟩NM

= ⟨σ∗
r∇ log p, π∗σ

∗
r∇·⟩TM + ⟨σ∗

r∇ log q,K⊥σ∗
r∇·⟩NM

= ⟨∇ log p, π∗∇·⟩TM +
1

r2
⟨∇ log q,K⊥∇·⟩NM,

where the last inequality follows from the Sasaki metric being the canonical variation relative to π (18). The final composition
with σ∗

1/r maps the above inner-product (function) from Tr(M) to T1(M) as desired.

We now verify that
∆V,q := ∆V + ⟨∇ log q,K⊥∇·⟩, ∆H,p := ∆H + ⟨∇ log p, π∗∇·⟩

have the desired properties. From (18, Definition 1.2), we have ∆V (f)(x, v) = ∆B(0,1)(f |π−1
x

)(v), hence by Lemma B.1,

∆V,q(f)(x, v) = ∆B(0,1)(f |π−1
x

)(v) + ⟨∇ log q,∇f |π−1(x)(v)⟩,

i.e. the weighted Laplacian on the ball. For the horizontal operator, the proposition similarly follows from Proposition B.1
as

∫
π−1(x)

∆Hf dq = ∆M

(∫
π−1(x)

f dq
)

by (18, 3.9).

Lemma B.3. The operators Λ̃µ,r, ∆V,q , and ∆H,p are non-negative and self-adjoint.

Proof. Integration by parts combined with the Neumann boundary condition yields∫
g∆V,qfdµ =

∫
⟨K⊥∇g,K⊥∇f⟩dµ =

∫
f∆V,qgdµ∫

f∆H,pgdµ =

∫
⟨π∗∇g, π∗∇f⟩dµ =

∫
f∆H,pgdµ.
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Lemma B.4. Λ̃µ,r, ∆H,p, and ∆V,q commute pairwise, thus there is a common orthonormal basis {ϕi}∞i=1 L
2(T1(M, µSa)

of smooth eigenfunctions such that

∆H,pϕi = λHi ϕi, ∆V,qϕi = λVi ϕi, Λ̃µ,rϕi = (λHi +
1

r2
λVi )ϕi =: λ̃i,rϕi. (1)

Note that these eigenfunctions and spectra λHi , λ
V
i are invariant for 0 < r < rM

Proof. ⟨∇ log σ∗
rp, π∗∇·⟩TM, ⟨∇ log σ∗

rq,K
⊥∇·⟩NM are operators on the horizontal and vertical tangent spaces, respec-

tively, hence they commute, and they commute with ∆V ,∆H respectively as seen in the argument of (18, Proposition 1.6).
This implies that the operators can be simultaneously diagonalized, i.e., the existence of a common basis of eigenfunc-
tions.

Lemma B.5. For λi(Λ̃µ,r) ≤ λV1 /r
2, ϕi(Λ̃µ,r) = ϕi(∆p) ◦ π and λi(Λ̃µ,r) = λi(∆p).

Proof. By Lemma B.1, if ϕi is an eigenfunction of ∆V,q, its fiber-wise restriction ϕi|π−1(x) must be an eigenfunction of
the corresponding weighted Laplacian on the ball. As its eigenvalue is smaller than λV1 /r

2, it must correspond to the 0
eigenvalue. This implies ϕi is constant fibre-wise, in particular ϕi(x, v) =

∫
π−1(x)

ϕi|π−1(x) dq. Thus, by Proposition B.1,

Λ̃µ,rϕi = ∆H,pϕi +∆V,qϕi = ∆H,pϕi = ∆M,p

∫
π−1(x)

ϕi|π−1(x) dq.

Thus for ϕi to be an eigenfunction, it must be that
∫
π−1(x)

ϕi|π−1(x) dq, as a function on M, is an eigenfunction of ∆M,p,

call it f . Further, for all v, ϕi(x, v) = f(x), or in other words, ϕ = f ◦ π as desired, and Λ̃µ,rϕi = ∆M,pf ◦ π = λHi f ◦ π.
Conversely, any f an eigenfunction of ∆M,p with eigenvalue λ < λV1 /r

2 corresponds to some ϕi as above.

B.2. Perturbation Argument

Our first aim is to analyze the effects of the noise on the (weighted) manifold Laplacian, namely to quantify the error between
∆Tr(M) representing the Laplacian operator of the “noisy” manifold Tr(M), and the “noiseless” manifold Laplacian ∆M,
particularly as it pertains to the spectral data associated to the principal eigenvalues. More precisely, we will be concerned
with eigenvalues below a threshold of the order r−2, showing that Proposition 2.1 holds approximately for ∆Tr(M). We
study both the unweighted case, where the sampling density µ on Tr(M) is uniform w.r.t. the induced measure from RD,
and the weighted case where smooth, non-degenerate µ factors along horizontal and vertical spaces. Throughout this section
the assumptions are the same as in Section 2.

The main idea is that the Sasaki metric closely approximates the induced metric on Tr(M). It follows from (20, Proposition
6) that, under rescaling, the residual between the induced metric ⟨·, ·⟩r on Tr(M) and the Sasaki metric ⟨·, ·⟩Sa,r is on the
order of the tube width.

Lemma B.6 (Sasaki metric perturbation). For the rescaled induced metric ⟨·, ·⟩r, let Ar,(x,v) denote its relative distortion
w.r.t the rescaled Sasaki metric ⟨·, ·⟩Sa,r := ⟨σ∗

r ·, σ∗
r ·⟩Sa. Then ∥I −Ar∥∞ ≤ Cr for a constant C depending only on the

manifold M.

Proof. From (20, Proposition 6), we have

⟨η, ζ⟩r = ⟨η, ζ⟩Sa,r −
1

3
⟨η⊥, R∗

W ζ⊥⟩Sa,x + rrr(η, ζ)

for some rr smooth and uniformly bounded for all r ≤ 1, and RW the Weingarten map (or shape operator) (37, Chapter 3).
The middle term, a function of the curvature of the ambient manifold, vanishes as the ambient Euclidean space is flat. Hence
we get a perturbation of the desired order.

Corollary B.7. Let µ be the induced measure and µSa the measure induced by the Sasaki metric. There exists a constant C
depending on M such that

∥1− dµ/dµSa∥∞ ≤ (Cr + 1)d − 1 = O(Cr), ∥I −Ar∥∞ ≤ Cr.
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Proof. From Proposition B.6 we have
∥I −Ar∥∞ ≤ r∥rr∥∞ ≤ Cr,

for some C depending on M. Now, dµ/dµSa = detAr, and the above bound on the operator norm implies

(1− Cr)d ≤ detAr ≤ (Cr + 1)d,

from which the inequality follows.

Next, to compare the spectral decompositions of ∆̃µ,r and ∆, we use a variational argument, studying the Dirichlet forms
of the two operators. As it will be of interest to us to compare operators relative to different underlying densities (Sasaki
vs induced), this requires an identification between the corresponding spaces of Sobolev functions H2(µ),H2(µSa). Even
though these spaces coincide, as a simple analysis such as (33, Proposition 5.2.2) reveals, some care is needed as the norms
are not the same, i.e. the L2 norm of the same function will differ depending on the measure. What we require is that they
are nearly isometric, that these norms can be made arbitrarily close as r → 0. For operators on different domains, in this
case the two sobolev spaces, one must find an identification between their domains for which the identified operators are
comparable. This leads to the technical notion of quasi-unitary equivalence.

Let ∆,∆′ be non-negative linear operators on H,H′ respectively. ∆,∆′ are δ-quasi-unitarily equivalent if there exists
J : H → H′, J ′ : H′ → H such that

∥J∥ ≤ 2, ∥J∗ − J ′∥ ≤ δ,

∥(I − J ′J)(∆ + I)−1∥ ≤ δ, ∥(I − JJ ′)(∆′ + I)−1∥ ≤ δ,

∥J(∆ + I)−1 − (∆′ + I)−1J∥ ≤ δ.

From this framework, the main result we will need is (33, Theorem 5.2.6), which we restate as follows.

Proposition B.8. Let ∆µ,∆
′
ν be weighted Laplacians with relative distortion A and ρ := dν/dµ. Let J : H1(µ) → H1(ν)

and J ′ : H1(ν) → H1(µ) be the trivial identification maps Ju = u, J ′f = f . Then for

δ := max{∥ρ1/2 − ρ−1/2∥∞, ∥ρ−1/2A1/2 − ρ1/2A−1/2∥∞},

δ̂ := max{∥1− ρ∥∞, ∥I −A∥∞},

∆µ,∆
′
ν are 4δ-quasi-unitarily equivalent. If δ̂ ≤ 1/2 then they are also 16δ̂-quasi-unitarily equivalent.

The following is a consequence of (33, Proposition 4.3.1) and the previous results, providing a general relationship between
the Sasaki and induced spectra.

Corollary B.9. There exists a constant C depending on M such that, for δ(r) := (Cr + 1)d − 1 = O(r), if δ(r) ≤ 1/2,

|λk(Λ̃r)− λk(Λr)| ≤ 8λk(Λ̃r)δ(r).

Further, there exists a constant Cλ such that, for δ(r) ≤ (1 + λ+ Cλ)
−1,

∥Pλ(Λ̃r)− Pλ(Λr)∥ ≤ 16Cλδ(r),

in particular, for any λk(∆̃r) ≤ λ simple, ϕk(Λ̃r), ϕk(Λr) unit, we have

∥ϕk(Λ̃r)− ϕk(Λr)∥ ≤ [2Cλ + 3(λk(∆̃r) + 1)]δ(r).

Corollary B.10. There exists a constant C depending on M such that, if Cr ≤ 1/2,

|λk(Λ̃µ,r)− λk(Λµ,r)| ≤ 8λk(Λ̃µ,r)Cr.

Further, there exists a constant Cλ such that, for Cr ≤ (1 + λ+ Cλ)
−1,

∥Pλ(Λ̃r)− Pλ(Λr)∥ ≤ 16CλCr,

in particular, for any λk(∆̃r) ≤ λ simple, ϕk(Λ̃µ,r), ϕk(Λµ,r) unit, we have

∥ϕk(Λ̃µ,r)− ϕk(Λµ,r)∥ ≤ [2Cλ + 3(λk(∆̃r) + 1)]Cr.
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Proof of Theorem 3.1. This result follows from the above results in tandem with Proposition 2.1, part 5.

Proof of Corollary 3.2. This corollary follows immediately due to the relationship P(µ) = λ1(∆µ)
−1.

C. Multi-scale spectral Growth
C.1. Packings

A ε− ∥ · ∥ packing of a space X , Xε = {xε1, . . . , xPack(X ,ε,∥·∥)}, is a maximal collection of points xεi such that min ∥xεi −
xεj∥ ≥ ε. The packing number Pack(X , ε, ∥ · ∥) is exactly the quantity of elements in the packing. Covering numbers
Cover(X , 2ε, ∥ · ∥) are similarly defined, but rather than a separation requirement, the union of the ε neighborhoods of
the cover elements should be the whole space X , and the cover should be a minimal collection that achieves this. In both
notations, we suppress the dependence on the norm when it is understood.

It follows that Xε is also a 2ε cover of Xε, Pack(X , ε) ≥ Cover(X , ε) as otherwise, if a point was 2ε distance from every
member of this set, it could be included while maintaining the ε separation property, contradicting the maximality of this set.

C.2. Proof of Theorem 3.3

We prove Theorem 3.3 in two steps. First, we focus on upper-bounding the counting function. We follow the details of (26).

Lemma C.1. Let X be a bounded domain with smooth boundary. Then,

N(C(4, ε)ε−2). ≤ Pack(X , ε)/(4C2(4, ε)).

Proof. We aim to construct a collection of orthogonal Neumann functions with controlled dirichlet form growth. By the
min-max characterization, this upper-bounds the growth of corresponding eigenvalues. The simplest way to do this is to
ensure that our functions have no common support, hence L2 orthogonality follows trivially. This is naturally achieved by a
packing, although the boundary of our domain requires a slightly specialized approach. That is, near the boundary, the ball
around a point in the subspace topology may be very degenerate, necessitating a more careful construction. This task has
already been undertaken in (26), and we reference the essential results.

Let ε,N > 0. By (26, Corollary 2.3), if supx∈X 4C2(4, ε)µ(B(x, ε)) ≤ µ(X )/N then one can construct A1, . . . , AN ⊆ X
such that

µ(Ai) ≥
µ(X )

2C(4, ε)
, d(Ai, Aj) ≥ 3ε.

Let Aε
i denote the ε−fattening of Ai, and let Iε be the collection of indices such that µ(Aε

i ) ≥ µ(Ai)/(N/2). By
subadditivity, it is immediate that |Iε| ≤ N/2. Hence, for any i ∈ Icε , by (26, Proposition 3.1), one can select fi unit norm
with Neumann boundary conditions supported on Aε

i such that R(fi) ≤ 4C(4, ε)/ε2. As the support of these functions is
disjoint, they are an orthonormal set of at least N/2 functions, hence

λN/2 ≤ 4C(4, ε)

ε2
.

It follows that 4C2(4, ε) supx∈X µ(B(x, ε)) ≤ µ(X )/N implies λN/2 ≤ 4C(4, ε)/ε2. Notice that

Pack(X , ε) ≤ µ(X )/ inf
x∈X

µ(B(x, ε))

hence 4C2(4, ε) supx∈X µ(B(x, ε)) ≤ µ(X )/N is satisfied for 4C2(4, ε)N ≤ Pack(X , ε) infx∈X µ(B(x,ε))
supx∈X µ(B(x,ε)) , that is

λ
Pack(X ,ε)/(4C2(4,ε))

infx∈X µ(B(x,ε))

supx∈X µ(B(x,ε))

≤ 4C(4, ε)

ε2
,

as desired.

For the remaining inequality, we follow (27).
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Lemma C.2. For X compact and convex or closed without boundary, there exists a constant C ′ depending on X such that

Pack(X , ε) ≤ N(C ′ε−2/C(2, ε)).

Proof. The structure of this proof is similar in flavor to Lemma C.1. We again subdivide our domain, this time via packing,
and consider the moments of different Laplacian eigenfunctions restricted to these disjoint balls. Precisely, for Xε, consider
the map

b(f) =


1

µ(B(xε
1,ε))

∫
B(xε

1,ε)
fdµ

...
1

µ(B(xε
Pack(X ,ε)

,ε))

∫
B(xε

Pack(X ,ε)
)
fdµ

 ∈ RPack(X ,ε).

Let {ϕi}∞i=1 be unit Laplacian eigenfunctions, and E(λ) = span{ϕi : λi ≤ λ} for some λ > 0. Suppose that there exists
f ∈ E(λ) such that b(f) = 0. To fall in the null space of b, f must be mean 0 across each of the given subdomains.
Intuitively, this requires strong variation for our function, which we quantify via Poincaré-type inequalities on each of the
balls, forcing the corresponding Laplacian eigenvalue to be large.

Making this precise, we have 1
µ(B(xε

i ,ε))

∫
B(xε

i ,ε)
fdµ = 0 for all i ∈ Pack(X , ε). In particular, we can use (27, Proposition

2.1, Proposition 2.1), and the realization of Xε as a 2ε cover to bound∫
f2dµ <

n∑
i=1

∫
B(xε

i ,2ε)

f2dµ ≤ C ′ε2
n∑

i=1

∫
B(xε

i ,2ε)

∥∇f∥2dµ ≤ C ′C(2, ε)ε2
∫
X
∥∇f∥2dµ,

where C ′ is a constant that depends on the dimension. Note that the first inequality is strict as if no two balls had non-
trivial overlap then another ball could be adjoined to the packing. To see the final inequality, we must show that every
x ∈ X is contained in at most C(2, ε) of the B(xεi , 2ε) balls. Take x ∈ B(xεi , 2ε). Observe that xεi ∈ B(x, 2ε), and in
particular, for any two such points covering x, xεi , x

ε
j ∈ B(x, 2ε). Thus, by the separation condition, there can be at most

Pack(B(x, 2ε), ε) xεi covering x.

For f ∈ E(λ) we have ∫
X
f2dµ ≥ λ−1

∫
X
∥∇f∥2dµ,

hence b(f) = 0 implies λ−1 < C ′C(2, ε)ε2. Thus for λ ≥ C ′C(2, ε)ε2, b is an injection. In particular, this implies that
dimE(ε−2/(C ′C(2, ε)) ≤ Pack(X , ε), that is

λPack(X ,ε) ≥ ε−2/(C ′C(2, ε)).

D. Further Data Details
D.1. Synthetic Data

d DM
S1 1 2
S2 2 3

S-Shape 2 3
Bottle 2 4

Table 1: Synthetic manifolds’
dimension

Throughout our experiments we will use four synthetic smooth manifolds: The unit
circle S1, the unit sphere S2, the S-Shape, and a new manifold that we created which
we will refer to as the Bottle(See Figure 7). This latter manifold is parametrized by:

f(x1, x2) =


sin(πx2)(1 + σ(sin(πx1)))
cos(πx2)(1 + σ(sin(πx1)))
sign(πx1)(cos(πx1)− 1)

2x2


for (x1, x2) ∈ [0, 1]× [0, 1] and σ the sigmoid function.

The intrinsic dimension d and ’usual’ ambient dimension DM(before they are embedded
again in an ambient space RD withDM ≤ D where noise will be added) of the synthetic
manifolds can be found in Table 1. We sample points uniformly from S1 and S2, while
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(a) Circle(S1) (b) Sphere(S2) (c) S-Shape (d) Bottle

Figure 7: Samples from the four synthetic manifolds used in our experiments colored by the first twelve ϕi(∆M) estimated
using Diffusion Maps. In subfigure d), only the first 3 ambient coordinates of the Bottle manifold are shown. The manifolds
have intrinsic dimensions dS1 = 1, dS2 = 2, dSShape = 2, dBottle = 2.

from the S-Shape and the Bottle we sample coordinates uniformly and map them to the
’usual’ ambient space. This sample is then embedded in a larger dimensional ambient space of dimension D where noise
is added uniformly on a ball of radius r in the normal space which has dimension dn = D − d. For our four synthetic
manifolds we analytically compute the normal space at every point. We repeat this process for various r ∈ [0, τ) and dn.
We sample as many points as we consider necessary depending on the experiment, but for most cases where we are not
interested in exploring the effects of sample size, we sample n = 5000 points.

D.2. Real Data

d DM
Tol 1 50
Mal 2 50
Eth 2 50

Table 2: Real manifolds’ di-
mension

For our real data experiments we use three Molecular Dynamic Simulations(MDS)
datasets: Toluene(Tol), Malonaldehyde(Mal), and Ethanol(Eth). MDS simulations
dynamically generate atomic configurations which, due to interatomic interactions,
exhibit non-linear, multiscale, non-i.i.d. noise, as well as non-trivial topology and
geometry. MDS are a heavily used tool, with many hours of high power computing
devoted to them. For more information on the MDS dataset we refer the reader to (28).

MDS data is originally generated in R3·Natoms coordinates. We process this raw data to
ensure the invariance to translation and rotation before we estimate the Laplace operators.
For this, we obtain an Euclidean group-invariant featurization of the atomic coordinates
as a vector of planar angles ai ∈ R3·(Na

3 ) representing the planar angles formed by
triplets of atoms in the molecule. We then perform SVD on this featurization, and project the data onto the top D = 50
singular vectors to remove linear redundancies. Thus, all three MDS datasets will have the same ambient dimension
DM = 50. Their intrinsic dimensions d can be found in Table 2 while visualizations are provided in Figure 8.

We add noise uniformly distributed on a ball of radius r in the ambient space for various r and dn. Noise is added in the
ambient space because, as opposed to the synthetic data, we don’t have access to the reach τ or to the normal bundle of the
MDS manifold. We do this for various r. We sample n = 7500 points for all our experiments.

E. Further Details on Validation Experiments
We conduct a series of experiments validating the threshold phenomenon and the robustness of low-frequency eigenpairs to
noise predicted by our theoretical results on the datasets described in Appendix D. For this purpose, we need to estimate
various Laplace operators and their eigenpairs as they have no analytical formulas that we can use(Sd being the exception).
We generate multiple datasets representing samples from Tr(M) for multiple increasing values of the two main noise
parameters of interest: r(the radius of the tubular neighborhood) and dn(the dimension of the normal space which is related
to the ambient dimension by D = dn + d). Theorem 3.1 predicts that low-frequency eigenvectors ϕi(∆Tr(M)) are stable
w.r.t. to these, while the noise threshold λV1 /r

2 acts as a delimiter between the noiseless and noisy eigenvectors. As such,
we develop both quantitative and qualitative methods to investigate this behavior.
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(a) Toluene(Tol) (b) Malonaldehyde(Mal) (c) Ethanol(Eth)

Figure 8: Samples from the three MDS datasets: Toluene(Tol), Malonaldehyde(Mal), and Ethanol(Eth) colored by the first
twelve ϕi(∆M) estimated using Diffusion Maps. The manifolds are embedded in R3 using ϕ1,2,3(∆M), but they have
intrinsic dimensions dTol = 1, dMal = 2, dEth = 2.

E.1. Estimating the Laplace Operators and their Eigenpairs

We rely on Diffusion Maps(1) to estimate the Laplace operators ∆M, ∆Tr(M), and their spectral decompositions. We select
the bandwidth ϵ required to compute the affinity matrix on a per dataset basis using the geometric self-consistency algorithm
of (38). We do so for all manifolds described in Section D, for many tubular neighborhood radii r ∈ (0, τ)(when the reach
is known), and dimensions of the normal space dn = D − d. For most of our experiments we use an embedding size of
m = 24, but in some case we use m > 24.

E.2. Qualitative Verification of the Theory

To validate the threshold phenomenon and the robustness of low-frequency eigenpairs to noise predicted by Theorem 3.1 we
observe the behavior of the eigenvalues λi(∆Tr(M)) and eigenvectors ϕi(∆Tr(M)) of the Laplacians estimated in Section
E.1 as r and dn are varied.

First, in Figures 9 and 10 we focus on the paths which the eigenvalues trace as r increases. Furthermore, we keep track of the
noise threshold and observe the effect that it has on the stability of the λi(∆Tr(M)). We notice that, as the theory predicts,
the eigenvalues well under λV1 /r

2 are almost constant, while the higher frequency ones become volatile with a downward
trend as they approach or surpass the noise threshold. Furthermore, we observe that increasing the noise dimension dn(and
implicitly increasing D) has no bearing on this effect.

Second, in Figures 11 and 12 we perform a similar experiment, but observe the behavior of the eigenvectors ϕi(∆Tr(M))
instead. In order to test their degree of corruption by noise, we color the coordinate spaces of the manifolds by ϕi(∆Tr(M)).
Visually, there should be a clear correlation between the values of the eigenvectors and the manifold coordinates, indicating
that ϕi(∆Tr(M)) correctly captures the structure of M. When that is not the case, we expect to see random patterns over
the coordinate space. Additionally, since for the synthetic manifolds we know the noise/normal space coordinates at each
sampled point, we fit polynomial regression models that use these as inputs and the ϕi as targets. If the model is able to
predict the embedding coordinates from the noise coordinates, we can safely conclude that ϕi(∆Tr(M)) encodes pure noise.
In our experiments we use polynomials of degree 2. Since we do not know the coordinate spaces of the MDS manifolds, we
use the lowest-frequency ϕ1,2,3(∆M) of the noiseless manifolds instead. These experiments, which confirm our predictions,
are summarized in Figures 11 and 12, while we display how the regression models can identify ’noise’ ϕi(∆Tr(M)) in
Figure 14.

F. Further Details on VAE and LTSA Experiments
F.1. VAE Experiments

VAE(Variational Autoencoder) (11) is a generative model that learns a probabilistic latent representation of data by combining
deep neural networks with variational inference. It optimizes a lower bound on the data likelihood by encoding inputs into a
latent space with a Gaussian prior and decoding samples back into the original space.

We repeat an adapted version of the eigenvector qualitative experiments outlined in Section E.2 and observe that VAE
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(a) Sphere

(b) S-Shape

(c) Bottle

Figure 9: Stability w.r.t to r and dn of the low-frequency eigenvalues for three synthetic manifolds: Sphere(a), S-Shape(b),
and Bottle(c). Each path corresponds to one λi(∆Tr(M)) with its log value on the y-axis evolving as r increases from left to
right on the x-axis. The frequency of the spectrum increases in the up y-axis direction. The noise level λV1 /r

2 is represented
by the black dotted line. On each row we have, from left to right, increasing noise dimensions dn ∈ {2, 3, 6, 16, 24, 32}.
Note that the eigenvalues remain mostly constant as long as they are below the noise threshold. However, this changes when
they approach or surpass λV1 /r

2. This phenomenon is largely independent of dn.

(a) Toluene(Tol) (b) Malonaldehyde(Mal) (c) Ethanol(Eth)

Figure 10: Stability w.r.t to r of the low-frequency eigenvalues for three real MDS datasets. Each path corresponds to one
λi(∆Tr(M)) with its log value on the y-axis evolving as r increases from left to right on the x-axis. The frequency of the
spectrum increases in the up y-axis direction. In all plots dn = 50 and, as opposed to the synthetic data, the noise is added
in all ambient directions. The noise level λV1 /r

2 is represented by the black dotted line. Note that the eigenvalues remain
mostly constant as long as they are below the noise threshold.
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(a) Sphere

(b) S-Shape

(c) Bottle

Figure 11: Stability w.r.t to r and dn of the low-frequency eigenvectors for three synthetic manifolds: Sphere(a), S-
Shape(b), and Bottle(c). We color the coordinate spaces of the manifolds by low-frequency(top) and high-frequency(bottom)
ϕi(∆Tr(M)). Notice the stability of the former as r increases and the corruption of the latter once the noise threshold
is passed. On each column we have, from left to right, increasing noise dimensions dn ∈ {4, 8, 16, 24}. We notice,
interestingly, that as dn(and thus D = d+ dn) increases, the effect of noise on the eigenvectors with the same frequency
is mitigated. This is to be expected as λV1 increases with the dimension, however a more detailed perturbation analysis is
necessary to rigorously verify that the perturbation magnitude decreases with dimension.
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Figure 12: Stability w.r.t to r of the low-frequency eigenvectors for the three real MDS datasets: Toluene(Left), Malon-
aldehyde(Middle), and Ethanol(Right). We color the coordinate spaces of the manifolds(for the MDS data these will be
the ϕ1,2,3(∆M) by low-frequency(top) and high-frequency(bottom) ϕi(∆Tr(M)). Notice the stability of the former as r
increases and the corruption of the latter once the noise threshold is passed. In all plots dn = 50 and, as opposed to the
synthetic data, the noise is added in all ambient directions.

embeddings behave similarly to those obtained by DM. However, there is no natural way to evaluate whether a VAE’s
latent coordinate ϕi is low or high frequency. For this purpose we use the regression procedure outlined in Section E.2.
Furthermore, we evaluate the ability of the decoder to reconstruct the output without using ϕi, but using all the other
coordinates. If the polynomial regression model is able to predict ϕi from noise and if the decoder doesn’t require ϕi for
proper reconstruction, we say that ϕi is high-frequency. Conversely, if ϕi is indispensable for reconstruction and cannot be
predicted from noise, then we call this latent coordinate low-frequency. We observe that this latter set is stable w.r.t. to both
r and dn. Furthermore, if the VAE has more capacity than need, then it will use the extra coordinates to encode noise. Our
experiments are summarized in Figure .

For all our VAE embeddings we use the same network which has an encoder with FC layers of sizes (64, 128), an embedding
size of m = 4, and a decoder with FC layers of sizes (128, 64). We use Layer Normalization (39) and GELU activation (40)
between the hidden layers, a batch size of 256, Adam optimizer (41), and a weight of 0.1 of the KL-Divergence loss relative
to the reconstruction loss.

F.2. LTSA Experiments

LTSA(Local Tangent Space Alignment) (12) is a classical manifold learning algorithm that does not rely on Laplacian
estimation. Instead, it computes local linear coordinates for the neighbors of each point and aligns these local representations
to obtain a global embedding. We repeat the eigenvector qualitative experiments outlined in Section E.2 and observe that
LTSA computed embeddings behave exactly the same as those obtained via DM and in complete agreement with Theorem
3.1.

For all our LTSA embeddings we use an embedding size of m = 12 and k = 32 nearest neighbors without a cutoff radius.
We only run these experiments on the synthetic data. Our results are summarized in 14. For all our LTSA embeddings we
use an embedding size of m = 12 and k = 32 nearest neighbors without a cutoff radius. We only run these experiments on
the synthetic data.
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(a) Sphere (b) Bottle

Figure 13: Results for VAEs trained on S2 and Bottle for dn = 16 and r increasing from left to right. Each panel corresponds
to one ϕi and displays from top to bottom: the coordinate space of the manifold colored by ϕi, the reconstruction of the data
without ϕi, and the prediction of each ϕi from normal space/noise coordinates by a polynomial regression model. ϕ1,2,3 are
stable w.r.t. to noise, indispensable for reconstruction, and cannot be predicted from noise. Conversely, ϕ4 is not correlated
with the coordinate space of the manifold, not important for reconstruction, and easy to predict from noise coordinates.

23



(a) Sphere

(b) S-Shape

(c) Bottle

Figure 14: Stability w.r.t to r and dn of the low-frequency embeddings and the threshold effect exhibited by the high-
frequency ones obtained using LTSA for three synthetic manifolds: Sphere(a), S-Shape(b), and Bottle(c). We color the
coordinate spaces of the manifolds by ϕi. Notice the similarity with Figure 11. As before, r increases from left to right,
while on each column we have dn ∈ {16, 24, 32}. On the left-hand side we use a polynomial regression model to predict
the ϕi’s from the known normal space/noise coordinates for all r’s and dn = 16. When we are able to do so(the diagonal
lines tell us when that is the case) we can conclude that the corresponding ϕi represents pure noise.
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