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Abstract

We introduce the setting of continuous index learning, where a function of many variables
varies only along a small number of directions at each point. For efficient estimation, it is
beneficial for a learning algorithm to adapt to the subspace that captures the local variability
of the function f . We pose this task as kernel adaptation along a manifold with noise, and
present the Average Gradient Outerproduct (AGOP) Descent feature learning algorithm, and its
continuous counterpart the Expected Gradient Outer Product (EGOP) flow. We prove that the
EGOP flow adapts to the regularity of the function of interest, showing that under a supervised
noisy manifold hypothesis, intrinsic dimensional learning rates are achieved for arbitrarily high
dimensional noise. On synthetic data, we show that AGOP descent mirrors the feature learning
capabilities of deep learning, while two-layer neural networks fail to do so efficiently.

1 Introduction

Kernel methods have recently risen in popularity in the study of machine learning algorithms. Many
algorithms have leveraged the corresponding RKHS structure for efficient estimation of sufficiently
regular functions [Wainwright, 2019], and functionals [Rao, 2014]. Further, many popular learning
algorithms, such as certain neural network architectures and random forests, have been shown to
asymptotically correspond to carefully chosen kernels [Jacot et al., 2018, Scornet, 2016]. Thus, the
question of kernel engineering [Belkin et al., 2018], the selection of kernels tailored to problems of
interest, is of central importance. This not only allows for potential efficiency gains, but also closely
emulates the feature learning properties of deep neural networks.

A modern incarnation of kernel engineering is multi-index learning, particularly in the case of
neural networks ([Boix-Adsera et al., 2023, Damian et al., 2023, Mousavi-Hosseini et al., 2022],
etc.). This literature aims to show that the desirable properties of kernel engineering, such as data
adaptivity and dimension reduction, are captured implicitly in certain machine learning models.
Much work has been done in the single-index case, where the outcome of interest depends on the
features x solely through their evaluation in a fixed direction v, xT v. These works have shown that
two-layer neural networks not only learn this dependence, but also do so efficiently, leading to rapid
increases in prediction quality ([Abbe et al., 2024, Bietti et al., 2022, Lee et al., 2024], etc.). In this
paper, we consider a setting we call continuous index learning, a regression task where the response
only depends locally on directions vx that change smoothly with the features x.

Of course, kernel engineering is a rich field in its own right. Of central interest is the design of
specialized kernels suited to particular data structures ([Barla et al., 2002, Chapelle et al., 1999,
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Figure 1: Localizations from AGOP Descent (Algorithm 1) centered at each of the highlighted
points (in red) trained on a grayscale image of a mandrill Bush [2021]. Here X is the location and
Y the grayscale value of the image. For visualization purposes the flow was stopped early to enforce
neighborhoods of 75 pixels at each point. On the right the image is magnified to the highlighted
region boxed-off on the left.

Joachims, 1998, Kondor and Jebara, 2003, Odone et al., 2005, Vishwanathan et al., 2010], etc.),
statistical principles ([Genton, 2001, Osborne, 2010, Schölkopf et al., 1997], etc.), and problems of
interest (Gong et al. [2024], Kokot and Luedtke [2025], etc.). In regression settings, the principle of
local feature learning, in which kernels are augmented by differential information at points of interest
([Lowe, 1999, Schmid and Mohr, 1997, Wallraven et al., 2003]), emerged. Earlier nonparametric
methods developed a similar framework, with datasets being recursively partitioned to improve the
quality of local fits [Breiman and Meisel, 1976, Friedman, 1979, Heise, 1971]. Our method bears
particular resemblance to “kernel steering” developed in the image processing literature [Takeda
et al., 2007] (see also the follow-up paper [Takeda et al., 2008]).

The goal of this method is to allow the kernel size and shape to change in a data-dependent way,
adapting not only to sample location and density, but also to local features in the data. A special
case of these data-adaptive kernels is the popular bilateral filter in computer vision [Tomasi and
Manduchi, 1998], [Elad, 2002]. In Takeda et al. [2007], they propose kernel steering, an iterative
procedure that estimates gradients about a point of interest. These are then used to “steer” the
kernel locally, adopting the empirical covariance of the gradients ♢̂ as a Mahalanobis distance for
subsequent estimation. Applying this method to the Gaussian kernel gives the steering kernel

Kh,♢̂(xi − x∗) =

√
det(♢̂)

2π2h2µ2
exp

{
− (xi − x∗)T ♢̂(xi − x∗)

2h2µ2

}
,
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Figure 2: AGOP Descent performed on data from a noisy circle in dimension D = 2. The overlaid
heatmap represents the values of the function of interest f that varies with the angle, up to additive
Gaussian noise. Left: domain of X and function values f(X). Right: neighborhood localization by
AGOP Descent iteration with convergence toward the central point.

which can then be used to estimate the function again, and further refine the estimate of ♢̂. This
directional adaptation enables more effective denoising and image recovery, and is closely related
to the expected gradient outer product (EGOP) ♢ := E[∇f(X)∇f(X)T ] [Hristache et al., 2001,
Samarov, 1993, Trivedi et al., 2014, Xia et al., 2002, Yuan et al., 2023].

Recently, a similar procedure has been proposed in Radhakrishnan et al. [2022, 2025], which
further emphasizes the importance of the empirical covariance matrix of the estimated gradients
♢̂, also called the Average Gradient Outerproduct (AGOP). In that paper, both empirical and
theoretical results closely relate this object to the performance of simple neural networks, and
it was shown that their method can adapt to the global regularity of the function of interest
[Radhakrishnan et al., 2025].

However, ♢ may generically be full rank, making procedures such as the above subject to the
curse of dimensionality. The present work focuses on exactly such a setting. We say that tuples
(X,Y ) satisfy the supervised noisy manifold hypothesis if they are such that X ∼ M + EM where
M is sampled from a d-dimensional manifoldM embedded in RD, EM is orthogonal toM at M ,
and f(X) = f(M) for f(x) := E[Y |X = x]. That is, the regression target does not depend on
the noise, f(x) = f ◦ π(x), for π the projection onto the manifold. For this to be well-defined, we
additionally assume that EM lies within the reach ofM Federer [1959] almost surely. Thus, in this
example, ♢ is locally of low-dimension, however globally it may not degenerate. The structure of
the features X is typical in manifold learning (Aamari and Levrard [2018], Genovese et al. [2012],
etc.).

When learning such a label of interest f(x∗), one would like to pool data orthogonally to the
manifold, leading to a vast reduction in variance compared to typical isotropic kernel methods. In
this ellipsoidal region, ♢ is approximately of low rank with principal eigencomponents tangential
to M. In this work, we bridge local [Takeda et al., 2007] and global [Radhakrishnan et al., 2022]
iterative AGOP schemes by developing a method that automatically forms such a localization,
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Figure 3: Localizations produced by a deep neural network while training on 105 points from the
noisy 1-sphere. Each localization is generated at a different phase of training indicated by the batch
number. Distances relative to the central point are computed in the learned embedding space, and
we sample 105 points with replacement using weights wi ∝ exp(−∥x − xi∥2Embed/8). Overlaid is a
heatmap of the distances in the embedding space.

without a priori knowledge of the manifold or the underlying regularity of the function. The
resulting estimator achieves adaptability reminiscent of deep neural networks [Cloninger and Klock,
2021], going beyond the multi-index setting.

As a first indicator of our method, observe that

vT♢v = E[(∇f(X)T v)2] = E[∂vf(X)2]

where ∂vf denotes the directional derivative of f along v. Hence, the quadratic form generated by
the EGOP is directly related to the directions of maximal variation of our function. This indicates
that it is desirable to shift the featuresX proportionately to this operator, which we make precise via
the theory of Wasserstein flows as described in the following section. This leads us to a discretized
algorithm we call AGOP Descent, which we study by its continuum counterpart, the “EGOP flow”.
We prove that under the supervised noisy manifold hypothesis, the resulting regressor has intrinsic
dimensional learning rates, regardless of the ambient dimension.

We support this theoretical result with the following numerical examples. First, expanding on
the noisy manifold setting, we show how our regression error rates remain invariant to the injection
of high-dimensional noise. Then, we compare our method to the performance of a deep neural
network on toy data. In particular, we show how the feature embeddings produced by transformers
trained on a simple example is qualitatively similar to the localizations generated by our procedure.
In contrast, in Section 5.3 we demonstrate that two-layer neural networks are not able to efficiently
learn in the noisy manifold setting, with a sharp decrease in performance compared to AGOP
descent. Finally, we apply this procedure to estimate backbone angles in Molecular Dynamics
(MD) data, where we leverage the noisy manifold structured data to improve prediction quality.
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2 An Isotropic Vignette

As a starting point, we reframe the classic Nadaraya-Watson [Nadaraya, 1964, Watson, 1964] kernel
regression algorithm through the viewpoint of Wasserstein flows. A rigorous treatment of Wasser-
stein flows can be found in Ambrosio et al. [2006]; in this section, we provide some intuition. An
illuminating viewpoint is that of a particle system evolving overtime. Let xt(x0) denote the location
at time t of a particle with initial position x0. The particle system follows the velocity field vt if the
instantaneous velocity ẋt(x0) of a particle with initial position x0 equals vt(xt(x0)) for all x0. The
law µt of the distribution of the particles at time t is exactly the pushforward1 µt = (xt)♯µ0 of the
law µ0 of initial positions of the particles. It is known (see Ambrosio et al. [2006]) that µt satisfies
the continuity equation ∂tµt = −∇(vtµt), with the gradient being defined in the weak sense

∂t

∫
ϕdµt =

∫
⟨∇ϕ, vt⟩ dµt.

For a functional on 2-Wasserstein space, F : P2(X )→ R, the analogous formula

∂tF(µt) =

∫
⟨∇WF(µt), vt⟩ dµt,

holds, where ∇WF(µt) can be explicitly derived as the gradient of the first-variation (closely con-
nected to other first order notions such as Fréchet and Hadamard derivatives) of F at µt.

We now relate Nadaraya-Watson to the isotropic flow with velocity field vt(x) = −(x − x∗).
For convenience, we will translate our function so that x∗ = 0 without loss of generality. The
ODE ẋt = −x has explicit solution xt = exp(−t)x0, which greatly simplifies our analysis. The
first object of interest that we will highlight is the “covariance” matrix Σt =

∫
xxT dµt. This

operator provides a simple encoding of the extent to which µt is warped in each direction. Further,
its determinant is related to the extent to which we have localized or contracted the measure.
Explicit computation reveals det(Σt) = exp(−2Dt) det(Σ0), but one can alternately derive, with
the Wasserstein formalism, the ODE ∂t det(Σt) = −2 tr(I) det(Σt), or equivalently ∂t log det(Σt) =
−2D, which allows for the same explicit solution.

We now introduce the smoothing operators

PΣt
f(x) = C(x)−1

∫
k(Σ

−1/2
t [x− y])f(y) dµ,

P̂Σt
f(x) = Ĉ(x)−1 1

n

n∑
i=1

k(Σ
−1/2
t [x−Xi])f(Yi)

where C(x), Ĉ(x) are the normalizing constants given so that the above convolutions are constant
on constant functions, and k is a kernel function (see [Tsybakov, 2009] for specific properties k
satisfies). This formula appears strange at first, but for this simple flow, one can directly compute

PΣtf =

∫
k(Σ

−1/2
0 [x− y]/ exp(−t))f(y) dµ =

∫
k([x− y]/h)f(y) dµ

setting initial covariance to I and identifying exp(−2t) with the bandwidth parameter h. Hence,
this is nothing more than Nadaraya-Watson. We can interpret the quadratic form vT (Σt)

−1v as a

1To preserve the flow of the presentation, some definitions are omitted; the reader is invited to consult Ambrosio
et al. [2006] for details.
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natural normalization of the vector v by the relative proportion of variation the distribution exhibits
in its direction, observing

∫
xTΣ−1

t xdµt = tr(ΣtΣ
−1
t ) = D. This metric has appeared in diverse

contexts from local features [Schmid and Mohr, 1997] to VAEs [Chadebec and Allassonnière, 2022].
To study the quality of this smoothing estimator, we use the usual bias-variance trade-off to get

E
[∫

(f − P̂Σt
f)2 dµt

]
≤

∫
(f − PΣt

f)2 dµt + E
[∫

(PΣt
f − P̂Σt

f)2 dµt

]
.

The first term can be bounded above by a Poincaré inequality. Indeed, we can locally interpret the
above convolution as a diffusion operator on µt under the metric Σ−1

t . Below we define the EGOP
functional.

Definition 1 (EGOP functional). We define the EGOP functional to be

W (µt) =

∫
∇fTΣt∇f dµt

Then, we have the following control on the “squared bias”.

Proposition 1 (Bias).
∫
(f − PΣtf)

2 dµt = O (W (µt)) .

The EGOP functional,W (µt) =
∫
xT∇f(y)∇f(y)Tx dµt(x)dµt(y) =

∫
xT♢tx dµt = Eµt⊗µt

[∂Xf(Y )2],
is the integral of the EGOP form xT♢tx. One can show that

∂tW (µt) ≈ −2W (µt) =⇒ ∂t logW (µt) ≈ −2,

or more directly, we can simply observe

W (µt) = exp(−2t)
∫
∇fTΣ0∇f dµt ∝ exp(−2t) =⇒ ∂t logW (µt) ≈ −2,

assuming our initial covariance is non-degenerate. In the following, we have the “variance” term of
the bias-variance trade-off.

Proposition 2 (Isotropic Variance).

E
[∫

(PΣtf − P̂Σtf)
2dµt

]
= O

(
1/[ndet(Σ

1/2
t )]

)
= O (1/[n exp(−Dt)]) .

Hence, setting h := W (µt) results in the usual curse of dimensionality.

Proposition 3 (Isotropic Bias-Variance Trade-off). E[
∫
(f − P̂Σt

f)2dµt] ≤ O
(
h+ h−D/2/n

)
.

Drawing our attention back to the EGOP functional, we see that, as a Dirichlet form, it expresses
the smoothness of f in the domain µt under the metric Σ−1

t . This leads to our approach, where
we localize by following the gradient of W (µ), which we estimate approximately via an appropriate
rescaling of the velocity field ẋt = −♢txt. In this sense, we are shifting our distribution to optimize
the smoothness, or rather, minimize the variation of, f .

We note that the isotropic flow is not entirely arbitrary, as it is the gradient flow with respect
to the functional

∫
∥x−x∗∥2dµ = W 2

2 (µ, δx∗). In this sense, it is exactly the localization procedure
best suited for the function f = ∥x∥2.
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3 Learning a Localized Kernel

In this section, we identify an appropriate velocity field for data adaptive local linear regression. In
particular, we seek a flow that rapidly decreases xT♢tx = Eµt [(x

T∇f)2], and thus the directions of
maximal local variation relative to our target function. We desire µt to approximately correspond
to sub-level sets of the form {x : xT♢tx ≤ C exp(−t)}. As indicated in Section 2, in the continuum
this corresponds to a flow in the direction of −♢tx, which we relate to a practical iterative scheme
for real data.

3.1 The EGOP Flow

We define the EGOP flow to be the continuous time flow with velocity field

vt(xt) = −
xt

T♢txt

xT
t ♢

2
txt

♢txt.

To motivate this choice, from Section 2, we see that it is desirable to minimize the EGOP functional
W (µt) =

∫
xT
t ♢txt dµt. This functional is given by point-wise integration of the EGOP form Ft(x) =

xT♢tx. Hence, to most sharply minimize this function, we seek to follow the velocity field induced

by its gradient, ∇Ft(x) ∝ ♢tx. The velocity field vt(xt) = − xT♢txt

xT
t ♢2

txt
♢txt = − ∇Ft(xt)

∥∇Ft(xt)∥2Ft(xt) is

precisely the rescaling that allows for a proportionate rate of decay ∂sFt(xs)|s=t = −2Ft(xt).

3.2 The AGOP Descent Algorithm

The typical approach to discretizing flows in optimization algorithms such as gradient descent in-
volves updating the point considered at a given step by moving it incrementally along the prescribed
velocity field. Mathematically, this is described by defining xt+1 = xt − αtvt(xt). In our setting of
empirically observed data, however, we cannot actually shift the data points. Instead, by adjusting
the region of localization, we mimic this process, contracting the domain to match the image of the
previous gradient steps.

Our discretized algorithm is structured similarly to Radhakrishnan et al. [2022], as we iteratively
estimate the function of interest f and the corresponding AGOP matrix with a Mahananoblis-
metrized kernel regressor. Our key innovation is to exclude, at each iteration, data points for which
xT ♢̂ix is particularly large, where ♢̂i is the estimated AGOP at the ith iterate. As a notable
difference from this previous work, we use the inverse covariance matrix rather than the AGOP
matrix as a local metric, and in Appendix A we compare their asymptotic behavior. The full
algorithm is below.

3.3 Setting the tuning parameters Samp, initial neighborhood size, and
α

Initial neighborhood size Theoretically, the algorithm starts with the entire sample, but in prac-
tice it should start from a spherical neighborhood large enough for estimating the local covariance
matrix, i.e. the initial M . Practically, this can be done using regular kernel regression for f , and
choosing the kernel width h by Cross-Validation (CV); then, the neighborhood radius should be
≈ 3hCV .
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Algorithm 1 AGOP Descent

Initialize data (X,Y ), n← |X|, select a basis such that Σ0 = I, k kernel function
Set x0 ← x∗

Set target sample size Samp
Fix α ∈ (0, 1) Removal proportion
MISE← 0
while n > Samp do

n← |X|
M ← 1

n

∑
xi∈X(xi − x∗)(xi − x∗)T

for i, j in 1 : n× 1 : n do
Wij ← k(M−1/2(xi − xj))

end for
Wii ← 0 for i = 1 : n
W ← RowNormalize(W ) %

∑
j W [i, j] = 1, for i = 1 : n

prediction← zeros(n)
gradients← zeros(n,D)
for i in 1 : n do

Li, ci ← LocalLinearRegression(Y,X −X[i, :],W [i, :]) % Linear fit and intercept
prediction[i]← ci
gradients[i, :]← Li

end for
♢← gradientsT gradients /n
m← (1− α)-quantile([xi − x∗]T♢[xi − x∗])
Remove xi from X if [xi − x∗]T♢[xi − x∗] > m

end while
W0j ← k(M−1/2(x0 − xj)) for j = 1 : n
W [0, :]← RowNormalize(W [0, :])
L0, c0 ← LocalLinearRegression(Y,X,W [0, :])
return c0

Samp This is the stopping parameter of the while loop in Algorithm 1. In our implementation,
we choose it by CV.

α The parameter α controls the time discretization of the EGOP flow. We note that Samp ≈
n(1 − α)#iterations; hence, we can choose a #iterations sufficiently large, then set α = 1 −
exp

(
lnn/Samp
#iterations

)
. In our experiments, we found that the algorithm results are not sensitive to

α and set α = 0.2 unless otherwise mentioned.

4 Convergence rate analysis under EGOP kernel regression

In this section, we verify fundamental results for localizations generated by flows. All proofs are in
Appendix B.

Key to our analysis will be the following generic result on localizations induced by flows.

Lemma 1. Let µt be a flow satisfying ∂tµt = −∇(vtµt), and PΣt
the normalized k-convolutional
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operator on µt in Mahalanobis-metric Σ−1
t , P̂Σt its empirical version and

cv := lim
t→∞

log det(Σt)/ logW (µt).

Then, for tn such that W (tn) = O(n−1/(1+cv/2)),

E
[∫

(f − P̂Σtn
f)2 dµt

]
= O(n−1/(1+cv/2))

By L’Hôpital’s rule,

lim
t→∞

log det(Σt)/ logW (µt) = lim
t→∞

∂t log det(Σt)/∂t logW (µt),

hence it suffices to consider these equations at first order.

Lemma 2. Let µt be a flow satisfying ∂tµt = −∇(vtµt). Then,

∂t log det(Σt) = −2
∫
⟨Σ−1

t x, vt(x)⟩ dµt

∂tW (µt) = −2
∫
⟨♢tx, vt(x)⟩ dµt − 2

∫
⟨∇2f(x)Σt∇f(x), vt(x)⟩ dµt

We decompose ∂tW (µt) into the contraction and twist components

Ct :=
∫
⟨♢tx, vt(x)⟩ dµt, Tt :=

∫
⟨∇2f(x)Σt∇f(x), vt(x)⟩ dµt,

with the contractive component corresponding to the decrease in the AGOP form Ft(xs) with t
fixed and s varying, and the twist being induced by the shift of the measure µt that perturbs the
matrix ♢t.

Lemma 3. Letting µt denote the EGOP flow,

Ct = W (µt), lim
t→∞

Tt > 0.

In our setting of interest, we can additionally bound the log-volume.

Lemma 4. Let (X,Y ) satisfy the noisy manifold assumption in (d,D), and µt denote the EGOP
flow. Then,

lim
t→∞

∂t log detΣt ≥ −2d.

We use these results to verify intrinsic dimensional learning for arbitrary high-dimensional noise
in the noisy manifold setting.

Theorem 1. Let (X,Y ) satisfy the noisy manifold assumption in (d,D), and µt denote the EGOP
flow. Then cv ≤ d, in particular

E
[∫

(f − P̂Σtn
f)2 dµt

]
= O(n−1/(1+d/2)).

In other words, the kernel regressor P̂Σtn
f converges to the target f at a rate that depends only

on the intrinsic dimension d and not on the noise or ambient dimension.
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Figure 4: (Left) Comparison of AGOP Descent to performance of two-layer neural network archi-
tectures trained on helical data in ambient dimension D = 5. (Right) AGOP Descent trained on
helical data in various ambient dimensions D.

5 Simulations

In our simulations, we consider helical data, parameterized by a curve θ(t) = (sin(t + w1), cos(t +
w1), sin(t+w2), cos(t+w2), . . . , g(t)), where g(t) = t is a linear term included ifD is odd dimensional,
and the wi are constant offsets taken as a mesh from 0 to 2π. We rescale this data by a constant
τ , then contaminate it with uniform, orthogonal noise of radius r. In our simulations, we set
τ = 0.8, r = 0.5, and sample t from 0 to 2π. See Figure 7 for a visualization. A benefit of this
choice of curve is that the tangent directions are diverse and the curvature is stable. For the
outcomes y, we generate a 3rd degree polynomial with coefficients uniformly sampled from (−3, 3),
then evaluate it at the projection point onto θ(t). See Appendix D for the precise implementation
of AGOP Descent used in these examples.

5.1 Learning Rate

We generate helical data in a variety of dimensions, testing the AGOP Descent algorithm. As seen
in Figure 4, the learning rate is constant, although it is affected by dimensional constants. The
estimates for the MSE were computed over 100 withheld test samples, repeated 1000 times for each
training data size n.

5.2 Feature Learning

In this section we compare the local feature learning capabilities of a deep, transformer based neural
network [Gorishniy et al., 2023] and AGOP descent. We consider data generated from a 1-sphere
under the supervised noisy manifold hypothesis. Motivated by the recent work [Anonymous, 2025]
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where it was shown that low-dimensional spectral embeddings can imprecisely recover intrinsic
structure in the noisy manifold setting, we demonstrate that AGOP Descent allows for this gap
to be bridged. In particular, on this simple dataset, the features are nearly completely denoised,
achieving a localization of comparable quality to the transformer embedding, as shown in Figures
2 and 3. In Appendix D, we provide additional unsupervised embeddings for comparison.

5.3 Two-layer Neural Network

We assess the performance of two-layer neural networks in the continuous index setting, see Ap-
pendix D for architecture details. That low intrinsic dimensionality of datasets can accelerate
learning has been frequently observed in the machine learning literature (Kiani et al. [2024], Liu
et al. [2021], etc.). We show that these guarantees are diminished for learning f with low local in-
trinsic dimension (continuous single-index), even when the features follow an approximate manifold
structure. This is demonstrated in Figure 4. Further, the far lower test MSE achieved by AGOP
Descent illustrates the significant suboptomality of these algorithms.

5.4 Predicting the backbone angles in Molecular Dynamics (MD) data

This example comes from the analysis of molecular geometries. Raw data consist of X,Y, Z co-
ordinates for each of the Na atoms of a molecule, which, due to interatomic interactions, lie near
a low-dimensional manifold [Das et al., 2006]. While the governing equations of the simulated
dynamics are unknown, for small organic molecules, it has been observed that certain backbone
angles [Das et al., 2006] vary along the aforementioned low-dimensional manifold. Specifically, for
the malonaldehyde molecule, the two backbone angles denoted τ1,2 are shown in Figure 8. We used
a subsample of molecular configurations of size n = 104 from the MD simulation data of Chmiela
et al. [2017] as input data.2 The configuration data, pre-processed as in Koelle et al. [2022], con-
sists of D = 50 dimensional vectors and lies near a 2-dimensional surface with a torus topology (see
Figure 8). On a hold-out set of 500 test points, AGOP Descent yields an MSE of 0.0011, compared
to 0.012 for Gaussian kernel Nadaraya-Watson with cross-validated bandwidth selection.

6 Discussion

Our work presents a localization scheme motivated by Radhakrishnan et al. [2022]. It is important
to note that some of our results are in population, as we consider an estimator resulting from the
continuous EGOP flow. In particular, we do not consider the rate at which one can learn the
EGOP matrix itself given only empirical data, an essential next step to verify efficient estimation.
In Appendix E, we go into further detail on this problem, and we give both theoretical and numerical
evidence indicating that this can be overcome in a future analysis.

It is also of key interest to further develop the connection between our discretized flow and the
EGOP velocity field. While these two procedures are comparable in their level-set descents, there are
key differences in the resulting distributions of datapoints. In particular, as discussed in Appendix
A, these procedures result in different densities on the prescribed regions, and thus the AGOPs
will have different values. A simple solution is to impose an inverse propensity weighting on the
discretized data to better match that of its continuous counterpart. However, it is unclear whether

2Made available at montlake.github.io along with the backbone angles τ1,2 for each sample.
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this is computationally justified, as we see tremendous results for the uncorrected implementation
presented in this work. In future research, we hope to further explore this disparity, either adjusting
the EGOP flow to capture more information regarding this discretization, or to refine our estimation
procedure for enhanced theoretical guarantees.

Though not explored in this work, of additional interest is an adaptation to more carefully
extend the localization procedure induced by AGOP descent. In particular, we prove only adaptive
learning for flat level sets of the function f , which can be achieved via ellipsoidal localizations. In
Appendix D, we enhance our method with a diffusion maps-style affinity matrix [Belkin and Niyogi,
2003, Coifman and Lafon, 2006], and show that this allows for curvature in the localization.
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Samson Koelle, Hanyu Zhang, Marina Meilă, and Yu-Chia Chen. Manifold coordinates with physical
meaning. Journal of Machine Learning Research, 23, 2022.

Alex Kokot and Alex Luedtke. Coreset selection for the sinkhorn divergence and generic smooth
divergences. arXiv preprint arXiv:2504.20194, 2025.

Risi Kondor and Tony Jebara. A kernel between sets of vectors. In Proceedings of the 20th inter-
national conference on machine learning (ICML-03), pages 361–368, 2003.

Jason D Lee, Kazusato Oko, Taiji Suzuki, and Denny Wu. Neural network learns low-dimensional
polynomials with sgd near the information-theoretic limit. Advances in Neural Information Pro-
cessing Systems, 37:58716–58756, 2024.

Hao Liu, Minshuo Chen, Tuo Zhao, and Wenjing Liao. Besov function approximation and binary
classification on low-dimensional manifolds using convolutional residual networks. In Interna-
tional Conference on Machine Learning, pages 6770–6780. PMLR, 2021.

David G Lowe. Object recognition from local scale-invariant features. In Proceedings of the seventh
IEEE international conference on computer vision, volume 2, pages 1150–1157. Ieee, 1999.

Alireza Mousavi-Hosseini, Sejun Park, Manuela Girotti, Ioannis Mitliagkas, and Murat A Er-
dogdu. Neural networks efficiently learn low-dimensional representations with sgd. arXiv preprint
arXiv:2209.14863, 2022.

Elizbar A Nadaraya. On estimating regression. Theory of Probability & Its Applications, 9(1):
141–142, 1964.

Francesca Odone, Annalisa Barla, and Alessandro Verri. Building kernels from binary strings for
image matching. IEEE Transactions on Image Processing, 14(2):169–180, 2005.

Michael Osborne. Bayesian Gaussian processes for sequential prediction, optimisation and quadra-
ture. PhD thesis, Oxford University, UK, 2010.

Adityanarayanan Radhakrishnan, Daniel Beaglehole, Parthe Pandit, and Mikhail Belkin. Mecha-
nism of feature learning in deep fully connected networks and kernel machines that recursively
learn features. arXiv preprint arXiv:2212.13881, 2022.

Adityanarayanan Radhakrishnan, Mikhail Belkin, and Dmitriy Drusvyatskiy. Linear recursive fea-
ture machines provably recover low-rank matrices. Proceedings of the National Academy of Sci-
ences, 122(13):e2411325122, 2025.

14



BLS Prakasa Rao. Nonparametric functional estimation. Academic press, 2014.

Alexander M Samarov. Exploring regression structure using nonparametric functional estimation.
Journal of the American Statistical Association, 88(423):836–847, 1993.

Cordelia Schmid and Roger Mohr. Local grayvalue invariants for image retrieval. IEEE transactions
on pattern analysis and machine intelligence, 19(5):530–535, 1997.

Bernhard Schölkopf, Patrice Simard, Alex Smola, and Vladimir Vapnik. Prior knowledge in support
vector kernels. Advances in neural information processing systems, 10, 1997.

Erwan Scornet. Random forests and kernel methods. IEEE Transactions on Information Theory,
62(3):1485–1500, 2016.

Hiroyuki Takeda, Sina Farsiu, and Peyman Milanfar. Kernel regression for image processing and
reconstruction. IEEE Transactions on image processing, 16(2):349–366, 2007.

Hiroyuki Takeda, Sina Farsiu, and Peyman Milanfar. Deblurring using regularized locally adaptive
kernel regression. IEEE transactions on image processing, 17(4):550–563, 2008.

Carlo Tomasi and Roberto Manduchi. Bilateral filtering for gray and color images. In Sixth in-
ternational conference on computer vision (IEEE Cat. No. 98CH36271), pages 839–846. IEEE,
1998.

Shubhendu Trivedi, Jialei Wang, Samory Kpotufe, and Gregory Shakhnarovich. A consistent esti-
mator of the expected gradient outerproduct. In UAI, pages 819–828, 2014.

Alexandre B. Tsybakov. Nonparametric estimators, pages 1–76. Springer New York, New York,
NY, 2009. ISBN 978-0-387-79052-7. doi: 10.1007/978-0-387-79052-7 1. URL https://doi.org/

10.1007/978-0-387-79052-7_1.

S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph
kernels. The Journal of Machine Learning Research, 11:1201–1242, 2010.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cam-
bridge university press, 2019.

Wallraven, Caputo, and Graf. Recognition with local features: the kernel recipe. In Proceedings
Ninth IEEE International Conference on Computer Vision, pages 257–264. IEEE, 2003.

Geoffrey S Watson. Smooth regression analysis. Sankhyā: The Indian Journal of Statistics, Series
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